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Abstract
In this seminar, we examine the space group of a crystal and its irreducible representa-

tions. We review the basic properties of representations, describe the concepts of Bravais

and reciprocal lattice and introduce the Bloch functions as irreducible representations of

translational subgroup. In the end, we investigate the behavior of the Bloch functions

under space group symmetry operations and develop the rules for construction of the

basis of the irreducible representations of space groups.
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Introduction

1 Introduction

The space group of a crystal is the set of symmetry operations that leave the crystal lattice

invariant. The symmetry of a crystal is based on its spatial periodicity – the property of

being unchanged by the translations through certain distances in certain directions. All

translations are included in translational subgroup T and can be represented by lattice

vectors t which are integral linear combination of the basic lattice vectors x, y, z:

t = l x +m y + n z ; l, m, n integers. (1)

The parallelepiped formed by the basic lattice vectors is called a unit cell and the whole

crystal lattice can be described as an assembly of such parallelepipeds. Vertices of every

unit cell are equivalent lattice points and each can be mapped into another by a trans-

lation through some lattice vector. The set of all such points forms a Bravais lattice of

the crystal. In addition, a crystal lattice can also be symmetrical under certain rotations

and reflections or their combinations with parallel translations. In general, we can repre-

sent every symmetry operation of the crystal lattice as a combination of translation t and

point group operation p (a point group is a set of symmetry operations which leave at

least one point invariant, for example rotations and reflections). In solid-state physics we

traditionally denote such operations with so-called Seitz operator {p|t} (Fig. 1) defined

as:

{p|t}r = p r + w . (2)
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Figure 1: Schematic representation of the Seitz space group operator.

There are 14 possible types of the Bravais lattice, arranged into 7 crystal systems (tri-

clinic, monoclinic, orthorhombic, tetragonal, rhombohedral, hexagonal and cubic sys-

tem.) Combining 14 Bravais lattices with 32 possible crystallographic point groups pro-

duces 230 space groups; 73 of them are symmorphic (without screw axis or glide planes)

and 157 are non-symmorphic [1].
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Group theory: a short revision

2 Group theory: a short revision

A set gi is a group G with respect to a given group operation ◦ if the following properties

are satisfied:

• The result of a product gi ◦ gj is always an element of the set: gi ◦ gj = gk .

• The product is associative: (gi ◦ gj) ◦ gk = gi ◦ (gj ◦ gk) .

• There exists the identity element e: gi ◦ e = e ◦ gi = gi .

• There exists the inverse element g−1

i : gi ◦ g
−1

i = g−1

i ◦ gi = e .

The product g ◦ gi ◦ g
−1 can be formed for any operation g of the group G and is called

the conjugate element of gi by g. For any given gi the set of all its conjugates is defined

as a class C(gi). No two classes can have any element in common and as result every

group G can be partitioned as a sum of classes [2].

2.1 Schrödinger group

The Schrödinger group is defined as a set of operations g that leave the Hamiltonian H
invariant:

gHg−1 = H . (3)

From Eq. (3) it follows that Hamiltonian commute with all Schrödinger group operations

and that eigenstates of H are degenerate:

gHg−1 = H ⇒ gH = Hg , (4)

g(Hϕ) = g(Eϕ) ⇒ H(gϕ) = E(gϕ) . (5)

Eq. (5) shows that the states ϕ and gϕ are both the eigenstates of the Hamiltonian with

the same eigenvalue E. This applies perfectly to symmetry operations which by the de-

finition cannot affect energy eigenvalues. We say that eigenstates are n-fold degenerate

if there are exactly n linearly independent eigenstates gϕ that all belong to the same

eigenvalue.

There are two important properties of degeneracy to consider. First, any linear combi-

nation of degenerate eigenstates gϕ with eigenvalue E is eigenstate of H with the same

energy eigenvalue. Second, any eigenstate of H with eigenvalue E is linear combination

of n-fold degenerate eigenstates gϕ [2].

2.2 Representations

Let us now consider n-fold degenerate energy eigenvalue E:

Hϕi = Eϕi ; i = 1, 2, ..., n . (6)
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Group theory: a short revision

As mentioned before, any other eigenfunction belonging to the same eigenvalue must be

a linear combination of ϕi:

H
n∑

i

ϕici = E
n∑

i

ϕici . (7)

If a symmetry operation gk belongs to the Schrödinger group (from now on denoted by

G) then the state gkϕj must be degenerate by ϕj and therefore can be expressed as a

linear combination of the eigenstates ϕi:

gkϕj =
n∑

i

ϕicij . (8)

We added index j to the coefficients ci because they depend on particular eigenstate ϕj
that is being transformed. The coefficients cij form a matrix G(gk) which corresponds to

the operation gk of the group G so Eq. (8) can be more compactly rewritten as:

gk〈ϕ1, ϕ2, ..., ϕn| = 〈ϕ1, ϕ2, ..., ϕn|G(gk) . (9)

For every operation gi of the group G a matrix G(gi) can be given so that multiplication

rules of G are preserved:

gi ◦ gj = gk ⇒ G(gi)G(gj) = G(gk) . (10)

The set of matrices G(gi) is called a representation of the groupG and the set of functions

〈ϕ1, ϕ2, ..., ϕn| = 〈ϕ| is called the basis of the representation. Matrices G(gi) depend on

our selection of a basis so additional index must be used to label the selected basis and

Eq. (9) can be rewritten as:

gk〈ϕ| = 〈ϕ|Gϕ(gk) . (11)

Suppose that we have a single-degenerate basis 〈ϕ| and doubly-degenerate basis 〈ψ| with

representations Gϕ(g) and Gψ(g):

g〈ϕ1| = 〈ϕ1|Gϕ(g)11 , (12)

g〈ψ1ψ2| = 〈ψ1ψ2|

∣
∣
∣
∣

Gψ(g)11 Gψ(g)12
Gψ(g)21 Gψ(g)22

∣
∣
∣
∣
. (13)

If we combine the basis 〈ϕ| and 〈ψ1ψ2| into a three-dimensional basis 〈ϕ1ψ1ψ2| = 〈ϑ|, the

corresponding matrix Gϑ(g) can be written as:

Gϑ(g) =

∣
∣
∣
∣
∣
∣

Gϕ(g)11 0 0
0 Gψ(g)11 Gψ(g)12
0 Gψ(g)21 Gψ(g)22

∣
∣
∣
∣
∣
∣

. (14)
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Space group representations

The matrix Gϑ(g) has so-called block-diagonal form, where the diagonal elements of

a matrix are square matrices of any size. Representations of this form are said to be

reducible. The most important property of reducible representations is that we can di-

vide their basis into smaller degenerate parts and than obtain representations of lower

dimensions. In general, the basis of irreducible representations are formed by sets of

degenerate energy eigenstates. Group theory provides us with ways to reduce represen-

tations or tells us that such task is impossible, in which case the representation is said

to be irreducible. As a result, we can routinely obtain irreducible representations and

classify energy levels and their degeneracies by only knowing the symmetry group of a

system.

2.3 Irreducible representations

The number of irreducible representations of the group equals the number of classes.

The dimensionality of the irreducible representations can be determined by a simple rule

which states that the sum of the squares of the dimensions of representations equals the

order of the group (order of a group is the number of its elements) [2].

When matrices G(g) are given, it is useful to be able to recognize whether the repre-

sentation is reducible or not. The representation is irreducible if following conditions is

satisfied:
∑

g

χ
(
G(g)

)
∗

χ
(
G(g)

)
= n (15)

where χ(G(g) is the character of the group element g [trace of the matrix G(g)]. Elements

g belonging to the same class all have the same character. Irreducible representations

also satisfy two orthogonality relations:
∑

g

χ
(
Gi(g)

)
∗

χ
(
Gj(g)

)
= n δij , (16)

∑

i

χ
(
Gi(gj)

)
∗

χ
(
Gi(gk)

)
= n δjk . (17)

The basis of the representation Gi can be constructed by using the so-called projection

operator:
∑

g

χ
(
Gi(g)

)
∗

gjφ = function of the basis of Gi (18)

where φ is an arbitrary function.

3 Space group representations

In this section we investigate the behavior of the electrons moving in the potential field of

a crystal and try to find the energy eigenstates which forms the basis for the irreducible
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representations of the crystal space group (each irreducible basis must correspond to

single energy eigenvalue). Space group operation can be expressed as a combination of

point group operation and translation through a Bravais vector. All translations form the

translational subgroup T and its irreducible representations are a good place to start.

3.1 The translational group

The translational group T is a subgroup of the space group G. Elements of the group

T are translation operators {E|t} where t are lattice vectors defined by Eq. (1) and E
is identity point operation. Clearly, all translations along the x axis (x axis is parallel to

basis lattice vectors x) form a subgroup Tx and similarly for the other two axis. Since

elements of subgroups Tx, Ty and Tz commute (all translations commute!), group T is

Abelian and a direct product of the three subgroups:

T = Tx ⊗ Ty ⊗ Tz . (19)

When defining translations we must assume that the crystal is infinite which means that

we also have infinite number of translations. This inconvenience is solved by the Born-

von Kármán boundary condition [3]. Let us assume that that crystal has Nx primitive

cells along x axis. Using Seitz operators we can express Born-von Kármán condition with

following equation:

{E|Nxx} = {E|0} . (20)

By using periodic boundary condition we limited the number of translations along x axis

to Nx and the same procedure can be used for the other two axis. The total number

of elements in group T is therefore NxNyNz = N . Since group T is Abelian, every

group element is in a class of its own. Following the two rules from Section 2.3 we can

finally determine that group T hasN one-dimensional irreducible representations. When

searching for representations of group T , we can limit ourselves to one of its subgroups

and then construct the representations of T as a product of representations of Tx, Ty and

Tz [4]. We will denote the representation corresponding to operator {E|lx} as T kx

lx where

kx is index labeling one of the Nx possible representations of subgroup Tx. Translation

representations must obey the same multiplication rules as operators:

{E|l1x}{E|l2x} = {E|(l1 + l2)x} ⇒ T kx

l1x T
kx

l2x = T kx

(l1+l2)x . (21)

Exponential function in l satisfies multiplication rules in Eq. (21) and we multiply it with

constant related to label kx:

T kx

lx = exp(−i2πlkx) . (22)

The same holds for irreducible representations of Ty and Tz:

T
ky
my = exp(−i2πmky) , (23)

T kz
nz = exp(−i2πnkz) . (24)
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Space group representations

The direct product of representations of groups Tx, Ty and Tz can be written as:

T kx

lx T
ky
my T

kz
nz = exp

[
− i2π(kx l + kym+ kz n)

]
. (25)

The choice of constant i2π will be justified in following subsection.

3.2 The reciprocal lattice

Physical properties of a crystal (charge density due to the electrons, probability of finding

the atom at particular point in the lattice etc.) have the same periodicity as the lattice

itself [1]. Let the U(r) be such function. Due to periodicity following relation holds:

U(r) = U(r + t) (26)

where t is an arbitrary lattice vector. If function U(r) is expanded as a Fourier series:

U =
∑

g

Uge
igr (27)

it still must satisfy Eq. (26) which means that exponential factors must be invariant

under r → r + t transformation. To meet this requirement the scalar product gt must be

an integral multiple of 2π. Vectors g that produce function U(r) with desired periodicity

are called vectors of the reciprocal lattice and are given by [3]:

g = g1 a + g2 b + g3 c ; g1, g2, g3 integers. (28)

Vectors a, b and c are called the reciprocal basis vectors and are defined as:

a =
2π

V
y × z , (29)

b =
2π

V
z × x , (30)

c =
2π

V
x × y , (31)

where V = x(y × z) is the volume of unit cell. Just like we constructed a Bravais lattice

with vectors x, y and z, we can construct the so-called reciprocal lattice using vectors a,

b and c. Let us now calculate the scalar product gt:

gt = (g1 a + g2 b + g3 c)(l x +m y + n z) = 2π(g1 l + g2m+ g3 n) . (32)

We encountered similar term in Eq. (25). It is therefore convenient to include the repre-

sentation labels kx, ky and kz into vector k:

k = (kx, ky, kz) = kx a + ky b + kz c ; kx, ky, kz reals . (33)
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Space group representations

and rewrite the irreducible representation of group T from Eq. (25) into a more conve-

nient form:

T kx

lx T
ky
my T

kz
nz = T k

t = exp
[
− i2π(kx l + kym+ kz n)

]
= exp(−ikt) . (34)

The label k can be any general reciprocal vector (kx, ky and kz are real!) which is clearly

in conflict with demand to have exactly N irreducible representations. In the following

section we shall therefore include a few restrictions that will narrow the number of

irreducible representations.

3.3 Brillouin zone

Two vectors are defined as equivalent if they differ only by a vector g of the reciprocal

lattice given by Eq. (28) [1]. It is easy to show that equivalent vectors belong to the same

representation:

T k
t = exp(−ikt) , (35)

T
k + g
t = exp

[
− i(k + g)t

]
= exp(−ikt) exp(−igt) . (36)

From Eq. (32) we get:

gt = 2π(g1 l + g2m+ g3 n) = 2πµ (37)

g1, g2, g3, l,m, n integers ⇒ µ integer

and

T
k + g
t = exp(−ikt) exp(−igt) = exp(−ikt) exp(−i2πµ)

︸ ︷︷ ︸

=1

= exp(−ikt) = T k
t . (38)

As a consequence, we can always replace general reciprocal vector k with an equivalent

vector inside the primitive cell of a reciprocal lattice when labeling representations:

T k
t = exp(−ikt) ; kx, ky, kz real and ∈ (0, 1] . (39)

Open interval border at 0 is necessary because vector 0 is equivalent of all basis lat-

tice vectors! For practical reasons, the primitive cell is usually replaced with centered

primitive cell called the Brillouin zone or the first Brillouin zone which better reflects

symmetry of the reciprocal lattice. To further reduce the number of representations we

now use Born-von Kármán boundary condition:

{E|Nxx} = {E|0} ⇒ T kx

Nxx = T kx

0 ⇒ exp(−i2πNxkx) = 1 ⇒ kxNx integer . (40)

Since kx must lie on the interval (0, 1], all its possible values can be written as:

kx =
ǫ

Nx

; ǫ = 1, 2, ... , Nx (41)
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Space group representations

and similarly for ky and kz:

ky =
ρ

Ny

; ρ = 1, 2, ... , Ny , (42)

kz =
σ

Nz

; σ = 1, 2, ... , Nz . (43)

By limiting k to Brillouin zone and taking into account the Born-von Kármán boundary

condition we finally obtain the total of NxNyNz = N irreducible representations that

correspond to N classes of translational group T .

3.4 Bloch functions

After finding N irreducible representations of translational group T we must now find

their basis functions. From the definition of the representations follows:

T k
t ψk(r) = λk ψk(r) = exp(−ikt)ψk(r) (44)

where ψk(r) are basis functions of k representation. We assume that the functions ψk(r)
vary continuously over the Brillouin zone [5] and all N possible functions form what is

in solid-state physics called the band. Translational group T is a subgroup of Schrödinger

group so operators T k
t commute with Hamiltonian H:

H
(
T k

t ψk(r)
)
= T k

t

(
Hψk(r)

)
= λk

(
Hψk(r)

)
. (45)

Since eigenvalues λk are all distinct, we can conclude that they are not degenerate as

long as we stay in the same band so function Hψk(r) must be linearly dependent on

ψk(r):

Hψk(r) = ǫkψk(r) . (46)

Eigenstates of translational group are clearly the eigenstates of the Hamiltonian and

their label k also labels the energy eigenvalues ǫk. In general, eigenvalues ǫk are not all

different because degeneracies could appear when symmetry operations of space group

G other than translations are applied.

Functions that satisfy Eq. (44) are known since late twenties of the 20th century and are

called Bloch functions. General form of Bloch function is given by [3, 5]:

Ψj

k(r) = ujk(r) exp(ikr) (47)

where ujk(r) has periodicity of the crystal lattice:

ujk(r) = ujk(r + t) ; ∀t . (48)

Additional index j is necessary because in limiting case of separated atoms reciprocal

space collapses into k = 0, exponential part of Bloch functions vanishes and ujk(r) would
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become one of the manifold atomic orbitals φj (j = 1s, 2s, 1p, etc.). The physical mea-

ning of a band is now clear: If crystal atoms are separated, all states from the band would

reduce into the same atomic orbital.

The proof that Bloch functions really are eigenstates of the translational group is trivial:

T k
t Ψ

j

k(r) = Ψj

k(r − t)

= ujk(r − t) exp
[
ik(r − t)

]

= ujk(r) exp(ikr) exp(−ikt)

= exp(−ikt)Ψj

k(r) . (49)

3.5 Irreducible representations of the space group

In previous subsections we obtained the irreducible representations of translational group

T and Bloch functions as their eigenstates. We must now investigate how the Bloch

functions transforms under the space group operations. Using following operator pro-

duct [4]:

{E|t}{p|w} = {p|w}{E|p−1t} (50)

we obtain:

{E|t} [{p|w}Ψk] = {p|w}
[
{E|p−1t}Ψk

]
= {p|w} exp

[
− ik(p−1t)

]
Ψk . (51)

Scalar product is invariant under point group symmetry operation (k · t = pk · pt) so

Eq. (51) can be rewritten as:

{E|t} [{p|w}Ψk] = {p|w} exp
[
−ik(p−1t)

]
Ψk

= {p|w} exp
[
−i(pk)(pp−1t)

]
Ψk

= exp [−i(pk)t] [{p|w}Ψk] . (52)

Function {p|w}Ψk clearly transforms as Ψpk under arbitrary space group operation {p|w}:

{p|w}Ψk = Ψpk . (53)

By definition, basis functions transforms into each other under symmetry operations.

Basis of the representation can therefore be constructed using following rule:

〈Ψk| = 〈Ψpk| ; ∀p ∈ P and ∀pk ∈ Brillouin zone . (54)

Because point group P is closed, the same set is generated by any of the functions of the

set. At the end, we must prove that the same state Ψpk cannot appear in two different

basis. We start with point group operations p1 and p2 and two sets of basis functions:

Ψp1k1
∈ 〈Ψk1

| and Ψp2k2
∈ 〈Ψk2

| . (55)
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If p1k1 and p2 k2 are equal we have:

k1 = p−1

1 p2 k2 . (56)

p−1

1 p2 is clearly the element of the point group P so vector k1 = p−1

1 p2 k2 must, by defini-

tion in Eq. (54), belong to basis 〈Ψk2
| and consequently basis 〈Ψk1

| and 〈Ψk2
| are exactly

the same. The bases are therefore either equal or have no state Ψk in common so N
eigenstates of the translational group are separated into disjoint bases of space group G.

Such basis are not necessary irreducible as we will now demonstrate.

Consider a two-dimensional square lattice with side a and the C4v point symmetry. The

corresponding Brillouin zone is centered square lattice of length 2π/a with basis vectors

a and b. Vector K1 is chosen inside the Brillouin zone and than translated by 8 elements

of the C4v group (E, C2, C
+

4 , C−

4 , σv1, σv2, σd1, σd2). The resulting set of vectors (K1, K2,

..., K8) is shown in Fig. 2.

a

b
K2

K3K4

K5

K6

K7 K8

K1

Σd1Σd2

Σv1

Σv2

Π

a

-

Π

a

Π

a
-

Π

a

Figure 2: Set of vectors K, obtained when vector K1 is transformed by all elements of group C4v. Brillouin
zone is denoted with black dashed line and basis vectors a and b are denoted with red arrows.

Since no pair of vectors K is equivalent, Bloch functions corresponding to vectors K are

linearly independent and they form a basis of irreducible representation. Set of such

non-equivalent vectors of the form pK, where p goes over all elements of point group P
is called the star of vector K.

By lengthening vectors K until they touch the edge of the Brillouin zone we construct

the set of vectors H depicted in Fig. 3. As seen on Fig. 3, vectors H4 and H7 differ only

by the vector b of the reciprocal lattice and are hence equivalent. Bloch functions corre-

sponding to equivalent vectors transforms under the same representation so such basis

is clearly reducible. To construct the irreducible representation we only need vectors H1

H2 H3 and H4 while the rest of them are redundant.
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b

a

H1

H2

H3H4

H5

H6

H7 H8

Σd1Σd2

Σv1

Σv2

Π

a

-

Π

a

Π

a
-

Π

a

Figure 3: Set of vectors H, obtained by lengthening vectors K until they touch the edge of Brillouin zone.
Vectors H1 H2 H3 and H4 (black arrows) form the base of irreducible representation while other
vectors (dashed arrows) are all their equivalents.

To fully utilize the concept of the star we must introduce so-called group of the vector

k defined as the set of symmetry operations that leave the chosen vector k invariant or

transform it into equivalent vector. Irreducible representations of the group of the vector

are called small representations. For example, group of vector H1 (Fig. 3) is point group

Cs which includes elements E and reflection over the σv2 plane. Group Cs is Abelian and

includes two irreducible representations: A+ which is symmetrical with respect to the

plane σv2 and A− which is antisymmetrical. Representations and corresponding bases

are shown in Table 1.

representation E σ base

A+ 1 1 y

A− 1 -1 x

Table 1: Irreducible representations A+ and A− of the group Cs. Plane σ is perpendicular to the x axis.

Let us now arrange the Bloch functions corresponding to vectors H into set 〈Ψ1,Ψ2, ...,Ψ8|.
None of the functions Ψ is either symmetrical or antisymmetrical under the reflection σv2
but linear combinations Ψ1 +Ψ6 and Ψ1 −Ψ6 are:

{σv2|0}H1 = H6 ⇒ {σv2|0}Ψ1 = Ψ6 , (57)

{σv2|0}H6 = H1 ⇒ {σv2|0}Ψ6 = Ψ1 , (58)

⇒ {σv2|0}(Ψ1 +Ψ6) = (+1) · (Ψ1 +Ψ6) , (59)

⇒ {σv2|0}(Ψ1 −Ψ6) = (−1) · (Ψ1 −Ψ6) . (60)
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Combination Ψ1+Ψ6 is symmetrical and transforms under representation A+ while com-

bination Ψ1 − Ψ6 is antisymmetrical and transforms under representation A−. As men-

tioned before, vectors H1 and H6 are equivalent so their symmetric and antisymmetric

combinations can be labeled as Ψ+

1 and Ψ−

1 . The same hold for pairs of Bloch functions

(Ψ2,Ψ5), (Ψ3,Ψ8) and (Ψ4,Ψ7) so set of basis states can be rewritten as:

〈Ψ+

1 ,Ψ
+

2 ,Ψ
+

3 ,Ψ
+

4 ,Ψ
−

1 ,Ψ
−

2 ,Ψ
−

3 ,Ψ
−

4 | . (61)

Symmetric function cannot be transformed into antisymmetric so above basis reduces

into two new basis:

〈Ψ+

1 ,Ψ
+

2 ,Ψ
+

3 ,Ψ
+

4 | and 〈Ψ−

1 ,Ψ
−

2 ,Ψ
−

3 ,Ψ
−

4 | . (62)

Basis functions in 〈Ψ+| are orthogonal because they belong to the non-equivalent vectors

H1, H2, H3 and H4. They are also orthogonal to the functions in set 〈Ψ−| because either

they belong to the non-equivalent vectors (Ψ+

1 and Ψ−

2 ) or have been symmetrized with

respect to the small representations of vector H1 (Ψ
+

1 and Ψ−

1 ). Both new bases are there-

fore irreducible.

Although the reduction of the base 〈Ψi| was done for a specific example of vector H1 the

procedure is quite general. The star of a arbitrary vector k determines the irreducible

basis when corresponding functions are symmetrized with respect to the small represen-

tations of the vector k. Accordingly, each irreducible representation of the space group

is completely determined by the star of corresponding reciprocal vector and its small

representation.
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Conclusion

4 Conclusion

We have examined the space group of a crystal and its irreducible representations. We

have reviewed the basic properties of groups, their representations and describe the con-

cepts of Bravais and reciprocal lattice. We focused on translational subgroup and deve-

loped the Bloch functions as its irreducible representations. By investigating the behavior

of the Bloch functions under space group symmetry operations and by introducing the

concepts of the star of the vector and small representation we have developed the rules

for generating the irreducible representations of the space group.
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