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Abstract

We investigate the condition under which a polyatomic molecule is stable, when
its electronic state has orbital degeneracy (degeneracy not arising from spin). Jahn-
Teller theorem says that stability and degeneracy are not possible simultaneously
unless the molecule is colinear. After an introduction into adiabatic approximation
and quantum-mechanical description of the molecular vibration we formulate Jahn-
Teller problem and sketch the original theorem’s proof. In the end we discuss an
application of the theorem.

1 Introduction

Jahn-Teller effect describes the distortion of a non-linear molecule if ts electronic states
are degenerated. The effect is named after Hermann Arthur Jahn and Edward Teller, who
proved the theorem using group theory. The problem was first discussed in 1934 when
E. Teller and Lev Landau had many discussions on the stability of the CO2 molecule.
Teller’s student R. Renner showed that a linear molecule, which has degenerated electronic
states, should be stable; but Landau objected. His arguments were that in the degenerate
electronic state the symmetry on which the degeneracy is based will be destroyed. Teller
first showed that this is not true for colinear configuration of nuclei. But the question
was if there are some other exceptions. Teller and Jahn found out by a quite inelegant
method that this is the only case.

2 Adiabatic approximation

Molecule is composed of electrons and nuclei interacting by electrical forces. The idea
for adiabatic or Born-Oppenheimer approximation starts with the notion that nuclei are
more than thousand times heavier that electrons and therefore move much more slowly
that the electrons. We can therefore separate nuclear and electronic motion. The first
step is to calculate the electronic motions at assumption that nuclei are fixed and then
calculate the equilibrium positions of nuclei.

The total Hamiltonian of a molecule or a crystal may be written as ([1],[2])

H = Hel +Hions +Hions−el =
∑

i

P 2
i

2Mi

+
∑

j

p2i
2mi

+ V (R, r),
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where the first sum is over all nuclei and Pi,Mi are the momentum operator and mass of
the nuclei, the second sum is over all electrons and the last term is the potential energy
between electron-nuclei, electron-electron and nuclei-nuclei, where R and r marks the set
of nuclei and electron coordinates. In the adiabatic approximation one first solves the
Schrödinger equation for electrons where nuclei are fixed:

H0φn(r, R) =

[

∑

j

p2i
2mi

+ V (R, r)

]

φn(r, R) = En(R)φn(r, R), (1)

where φn are eigenfunctions of this Hamiltonian. The set of nuclear coordinates are
regarded as parameters with respect to the electronic motion; physically this means that
nuclei move much more slowly that electrons. Even this simplified problem is a formidable
task. Now we assume that the total solution can be written as

Φ(r, R) = φn(r, R)χ(R) (2)

and substitute the ansatz into the full Schrödinger equation:

H(R, r)Φr,R =

[

∑

i

P 2
i

2Mi

+
∑

j

p2i
2mi

+ V (R, r)

]

φn(r, R)χ(R) = EΦr,R (3)

≈
[

∑

i

P 2
i

2Mi

+ En(R)

]

χn(R) = Eχn(R), (4)

on going from the second to the third line we used Eq.(1) and neglected the second
derivative of φn(r, R) with respect to R. The last assumption is the main assumption
in the adiabatic approximation. Knowing the electrons energies for fixed R the Eq.(3)
allows us to get the solution of the whole problem. Electron energy can be seen as an
effective potential.

It is a common practice to solve vibrational problems by making expansion of the
electrons energy, around the assumed equilibrium configuration R0 in powers of the de-
viations from the equilibrium position ui = R−R0:

En(R) = En(R0) +
∑

i

(

∂E

∂ui

)

ui +
1

2

∑

i,i′

(

∂2En,i

∂ui∂ui′

)

uiui′ + . . . , (5)

where we have ignored the anharmonic terms. We can now make the transformation
to normal modes q =

∑

i Di,jui, where nuclear kinetic energy and the quadratic terms
in the potential will be diagonal. The term En(R0) in Eq.(5) is only an constant term
and in the vibrational theory the vanishing of the linear term is taken as a condition
for the establishment of an equilibrium configuration. Jahn and Teller showed that this
equilibrium configuration usually does not exist if electron states are degenerated.

3 Quantum-mechanical description of molecular vibra-

tions

The classical description of the molecular vibrations should be a known subject to reader
[1]. We can do completely analogous quantum-mechanical treatment of the problem. The

2



harmonic Hamiltonian operator in normal coordinates is written as

H =
3N
∑

k=1

(

−~
2

2

∂2

∂Q2
k

+
1

2
ω2
kQ

2
k

)

, (6)

where Qk denote the normal coordinates. The Hamiltonian is decomposed into the sum
of harmonic oscillators, therefore we can compose the solution as

Φ(n1, n2, n3, . . .) =
∏

k

φnk
(Qk),

where
φnk

(Qk) = AHnk
(µkQk) exp(−

1

2
µ2
kQ

2
k) (7)

are solutions of quantum harmonic oscillator and Hnk
are Hermitian polynomial, A nor-

malizing constant and µnk
= (ωk/~)

1

2 . The total energy is E =
∑

k(nk +
1
2
)~ωk.

The general vibration state is labeled by the set of quantum numbers nk, which tells us
the number of quantum excitations. Since we are only interested in the internal degrees
of freedom of a molecule, we must exclude six zero frequency modes, which corresponds
to the translation and rotation, from the wave function Φ = Φ(n1, n2, . . . , n3N−6).

The exponent in Eq.(7)

∑

k

µ2
kQ

2
k =

1

~

∑

α

mα
∑

p=1

ωα,p

sα
∑

i

Qαpi, (8)

where α labels the irreducible representation of symmetry group, i labels the row of certain
irreducible representation and p is label if there are two or more irreducible representation
with the same α. The dimension of the certain irreducible representation is sα. We
transform the coordinates Qαpi by a symmetry operation T:

Q′

α pi =
∑

j

T α
ijQα pj

and the exponent can be written as

∑

i

(Q′

αp i)
2 =

∑

i,j,k

T α
ijT

α
ikQα pjQα pk =

∑

j

Qαpj, (9)

where we used the fact that matrix T is unitary and real, therefore orthogonal. The
exponent in the wave function is invariant and the symmetry properties of the total wave
function is given by the product of the Hermitian polynomials. The ground state will
transform according to the H0, which is a constant—invariant under symmetry operation.
The first excited state is of form nαi pi = 1 for certain i and all the rest of the n′s are zero.
The symmetry properties of such a state are symmetry properties of the hermitian poly-
nomial H1(x) ∝ x, which is just the symmetry of the normal coordinates Qαi pi . The first
excited states are transformed just as the normal modes under irreducible representation
Tαi

, their energies are ~ωαi
and degeneracies sα. The states are called fundamental.
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3.1 Higher excited states

There are two types of higher excited states. First are called combination levels, where
two or more modes of different frequency are excited, and second are called overtone

levels, where single mode is excited with more that one quantum.
For example consider the most simple combination level, where nα1

= nα2
= 1 and the

remaining ni = 0, is described by a wave function proportional to H1(xα1
)H1(xα2) which

transform as the direct product of the representation T α1 ⊗T α2 . This simple combination
levels can now be labeled by a product representation. In general this product representa-
tion is reducible and if we add anharmonic terms in the potential without disturbing the
symmetry the product representation breaks down in to the irreducible representation.

Overtone levels are a bit more complicated, since the product states do not transform
according to a product representation. If xαp1 and xαp2 are coordinates of the degen-
erated doublet of the wave functions which transform according to T α, (pi is label for
function), then we can form only three wave functions H2(xαp1), H1(xαp1)H1(xαp2) and
H2(xαx2

), since H1(xαp1)H1(xαp2) and H1(xαp2)H1(xαp1) are equal. Only those functions
which are symmetric in the factors will exist and they form so-called symmetrised prod-

uct representation. We would like to make a decomposition of this symmetrised product
representation into the irreducible representations and therefore we need to know the
character of this representation for a certain group element. It can be shown, although
we will not do it here (The reader can check Ref.[1]), that character of this symmetrised
product representation is given by

χα×α
sym (a) =

1

2
[χα(a)]2 +

1

2
χα(a2), (10)

where χα×α
sym denotes the character of the symmetrised product representation and a is a

group element. Using Eq.10 we can decompose the symmetrised product representation
into irreducible components.

4 Two examples

Before the more formal formulation of the problem, we will consider two examples. In
the first example consider the motion of a single electron in the field of three nuclei lying
on a straight line. The symmetry group of the problem is C∞v, meaning 2D rotational
symmetry plus reflection over the vertical plane, if y-plane is the line of nuclei. The
states of the electrons transform under 1D irreducible representations with basis states
e±imφ, where m = 0,±1,±2, . . . All states are two fold degenerated, except the state with
m = 0. Now if one of the nuclei is misplaced from the equilibrium position perpendicular
to the axis for a distance d, the axial symmetry is broken and the degeneracy is removed.
Each twofold degenerated state will split into two states. One state will be symmetrical
with respect to the reflection about the symmetry plane and the second one will be
antisymmetrical. This states will have different energies and these energies will change
continuously with the displacement. It is clear that when the displacement is −d the
states and energies will be the same. Therefore the energy is even function of d. The
requirement for stability is fulfilled, since the linear term in Eq.5 is zero.
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The second example is motion of an single electron in the field of a plane square
configuration of four identical nuclei. The symmetry group of this problem is Dh

4 and
when wave function is determined in one half-plane perpendicular to the axis through the
center of the square, it is determined on all four half-planes perpendicular to each other.
The wave function is multiplied by eiλφ, where φ is restricted to ±π

2
, π, λ has values 0,±1

and state with |λ| = 1 is again two fold degenerated.
What can we say about the stability of the square configuration for this degenerated

electronic states? The displacement of the nuclei shown in Fig.1 may be regarded as
positive and negative value of the same displacement. This displacement clearly destroys
the four-fold axis, replacing it by a twofold one. The degenerated states will split into
two states, let us mark them with φ1, φ2, the first one having node in horizontal plane of
symmetry and the second one in the vertical plane of symmetry. The left configuration
(conf1) is geometrically similar to right configuration (conf2), since the horizontal plane
in conf1 corespondes to vertical plane in conf2 and vice versa. If we denote energies of
the wave functions by E1,2, we have the relation:

E1(conf1) = E2(conf2)

E1(conf2) = E2(conf1).

The two levels crosses at zero displacement, but there is no reason (at least symmetrical
reason), which would forbid a linear dependence of the energy levels. The conclusion is
that the square configuration in general will not be stable configuration.

Figure 1: The displacement of nuclei in the square configuration.

5 Formulation of the problem

In the first subsection we will just state the theorem without any further explanation.
The next subsection will form a basis for physical formulation of the problem. In the end
we will repeat the two examples already mentioned, using the formulation.

5.1 Jahn-Teller theorem

A geometrical configuration of a molecule in which the electronic state is degenerate
cannot be stable (on symmetry grounds alone) unless when the configuration of nuclei is
collinear or the electronic degeneracy is the Kramer twofold degeneracy [1].

5



5.2 Physical formulation

The starting point is Eq.5, where we expand the energy in terms of the nuclei positions
Vi = ∂E/∂ui and Vi,j = ∂2E/∂ui∂uj, which are functions of nuclei positions only. Let
E0 be the energy of the degenerated electronic state and φi a complete set of orthogonal
wave functions

H0φi = E0φi,

where H0 stands for the Hamiltonian in equilibrium (Eq.1). After the displacement
this energy levels can split or not (meaning, that they merely change the value). The
equilibrium configuration will be stable if linear term will vanish. We can use perturbation
theory, to check the linear term. The perturbed energies in first order are

E1 =
∑

i

ui〈φ1|Vi|φ2〉

and since perturbation is linearly dependent of ui, E1 → −E1 if all displacements changes
sign. The configuration can not be stable unless all (!) the perturbation elements vanish
in the first order.

Here comes the role of the symmetry. Vi = ∂E/∂ui and ui transforms according to irre-
ducible representation T β of the symmetry group, and E transforms according to identical
representation. Vi has to transform according to the complex conjugate representation
T (β)∗, but since the representation is real T (α)∗ = T α. In the chapter about quantum
vibrations we showed that wave functions transforms according to certain representation
of symmetry group as the normal coordinates does; let us mark this representation by
T α. If T α does not encounter in the reduction of the product representation Tβ ⊗ Tα

the perturbation is zero. If this condition is not fulfilled, then the integrals in general
will not vanish. Now we have a defined quantity, which is responsible for stability of the
equilibrium state. Since E1 is a number it is invariant under all group transformation
and if reduction of the representation of the product φ1Viφ2 does not contain the identity
representation, the perturbation will be zero. This is just another point of view of the
same argument as before, although it is sometimes easier to use. We will restrict ourself
only to the orbital degeneracy 1 where representation T α can always be chosen real and
the product of the functions transform according to the product representation

T β ⊗ [T (α)2], (11)

where [T (α)2] denotes the symmetrised product of the representation T α.
There are four interesting cases:

1. Electronic state is non-degenerated [T 2
α] = T1 and vibrational state is symmetric

T1. In this case perturbation is not necessarily zero. But system will readjust until
it is "accidentally zero", since it evolves a symmetric mode and does not destroy
the symmetry of the system.

2. Electronic state is non-degenerated [T 2
α] = T1 and vibrational state is asymmetric

Tγ 6= T1. The perturbation is always zero.

1We will not consider the degeneracy arising from the invariance of the wave function with respect to
time reversal. The spin wave function and its role in Jahn-Teller effect will be briefly considered at the
end of the section.
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3. Electronic state is degenerated [T 2
α] = T1 + . . . and vibrational state is symmetric

T1. The perturbation is not necessarily zero, but situation is analog to the first
situation.

4. Electronic state is degenerated [T 2
α] = T1 + . . . and vibrational state is asymmetric.

In this case we have Jahn-Teller effect, since the product of the states nearly always
contains T1 and the equilibrium is obtained by changing the original symmetry.

5.3 Two examples

Let us illustrate the general considerations on the two examples given in the previous
section. In the first example the symmetry group is Cv

∞
= R2 × S2. The degenerate

irreducible representations (there is also one non-degenerate representation) of the group
are all two-dimensional and there is an infinite series of them: E1, E2, . . . Using Eq.10 we
can decompose the symmetrised product:

[E2
k ] = A1 ⊕ E2k, (12)

where A1 is identical representation. For linear nuclear configuration non-totally sym-
metric solutions are of type E1 and the decomposition of the whole product is

E1[E
2
k ] = E1(A1 ⊕ E2k) = E1 ⊕ E2k+1 ⊕ E2k−1, (13)

where the last equality comes from simple decomposition of the product representation
E1 ⊗ E2k. The decomposition does not contains the identity representation so all the
linear terms in perturbation are zero. The molecule is stable.

The analysis of the second example is equivalent. The symmetry group is Dh
4 and

this group has two degenerated irreducible representations Eg,u, which are 2 dimen-
sional. The square configuration possesses non-totally symmetrical displacements of types
B1g,1u,2g, Eu. Using Eq.10 we can show

[E2
g,u] = A1g + B1g + B2g (14)

and from character table we can see that B2
1g,2g = A1g, therefore B1g,2g[E

2
g,u] all contain

the identical representation. We can conclude (but only from symmetry point of view)
that this molecule is not stable for a degenerate electronic state of either type.

6 Sketch of proof

The original proof of Jahn-Teller theorem [2] is a tedious job. After initial plan the
calculations are straightforward, but very time-consuming, or as the Teller said[3]:"It
was not a proof that a mathematician would enjoy." We will just make a sketch of the
proof with an example. All further calculations should be straightforward.

We have to show, for all configurations and any degenerate representation of of elec-
tronic symmetry group Tα, that a nuclear configuration posses non-totally symmetrical
normal displacements, which transform according to the irreducible representation Tβ.
The perturbation is zero if T β occur in the reduction of [T (α)2].
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We know how to calculate for any given nuclear displacement how many normal
displacements of certain irreducible type occur in the reduction. To apply this calculations
to all possible symmetrical molecules we note that any symmetrical configuration must
contain a set on nuclei, which transform into each other under symmetry operation. This
nuclei form a set of the equivalent points and for given group there are various possible
kinds of such equivalent sets. Imagine a random point in the space2 and if we act with all
the symmetry operations of certain group on this point we get a set of equivalent points.
Now if this point lie on certain symmetry line, then the set of equivalent points will be
smaller, since some operations will produce the same point. Example for group D3 is
shown in Fig.2.

Jahn and Teller actually checked all the possible sets of equivalent points for all points
groups and for each set they found what types of normal displacements occur3. They
investigated what is the minimum number of equivalents points from which a molecule of a
certain symmetry can be composed. In the end they checked all the symmetrised products
of all possible degenerated representations. Now the theorem was easily checked, just
by comparing the decomposition of a group representations according to the vibrational
normal modes and the decomposition of the symmetrised products for every points group.

Let us consider just one example D3. First we must find sets of equivalent points
and check the reduction of group representation according to vibration. The vibrational
characters is calculated using

χ(R(θ)) = (NR − 2)(2 cos(θ) + 1), (15)

where θ is angle of rotation and NR is number of point, which stays fixed for a certain
group operation. Here we have to emphasize that different kind of equivalent points has
different number of fixed points for certain operation.

There are four kinds of equivalent points and graphical representation is seen in Fig.2:

1. Initial point is random: we have 6 equivalent points in a set, which is the same
as the number of group elements. Using formula 15 the reduction into irreducible
representation for the whole set of nuclear displacements, without rigid rotations
and translations, is 3A1 ⊕ 4E ⊕A2. With 6 molecule we have 3× 6 = 18 degrees of
freedom and if rigid translation and rotation have 3 + 3 degrees of freedom we are
left with 12 = 3× 1 + 4× 2 + 1 which agrees with the reduction.

2. Initial point lie on C2 axis of rotation: we have 3 equivalent points in a set. The
irreducible components are A1 ⊕E. With 3 molecules we have 3× 3 = 9 degrees of
freedom and without rigid translations and rotations we are left with 3 = 1 + 2.

3. Initial point lie on C3 axis of rotation: we have 2 equivalent points in a set. The
irreducible components are A1 ⊕E2, but be aware that in this case we do not have
rigid rotations.

4. Initial point lie in the center: we have just one trivial point in a set. The irreducible
components are A2 + E1, where we do not have rigid translations and rotations.

2Random in sense that it does not lie on any symmetry line or plane.
3The reader is invited to check the 4 page long table in the original article [2].
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Figure 2: Four kinds of equivalent points for group D3, where filled circles marks the
point under the horizontal plane and open circles mark the points above the horizontal
plane. The order of different points set’s is the same as in the text.

When we construct the table of irreducible components for all the sets of equivalent
points for each point group, we still need a table for minimum number of equivalent points
from which a molecule can be composed. In case of D3 we need one set of equivalent
points, where initial point is random (type 1). This is also the only possible choose,
since all other combinations of the equivalent points have higher symmetry. Another
nontrivial example is a molecule of the tetragonal symmetry. We can take random initial
point and set of equivalent points will form a tetrahedron, but if we take six points and
put them on two fold axes, then this configuration will have higher octahedron symmetry.
The last step in this proof is to construct the table of symmetrical products for all of
the degenerated representations. By trivial but tedious comparison of all the tables, the
proof is finished.

Of course later more mathematical rigorous proof were established, but here we do not
have enough space to introduce the whole new pallet of group-theoretical tool. The main
idea is to get well defined tool from theory of groups that is able to describe equivalent
points and then study the reduction of the representations. In Ref.[4] and references
therein the reader can find group theoretical proof of Jahn-Teller theorem.

We have to point out that effect will be important only if the degenerated electrons
participate strongly in the binding of the molecule and if the perturbation arising from
nuclei displacement is appreciable. The effect is small if the degenerated electrons are in
inner atomic shells or if they are in highly excited states. The case with inner degenerated
electronic shells that do not contribute much to binding, are paramagnetic rare earth ionic
salts.

An extension of the theorem to cover the additional degeneracy arising from the spin
[5], shows that if total orbital and spin electronic state is degenerated, then a non-linear
molecule will be unstable, unless the degeneracy is Kramer degeneracy (only an odd
number of electrons). The additional instability because of the spin degeneracy alone is
shown to be very small. The additional idea was that spin could stabilize a non-linear
molecule, but it was shown that this is not possible, because the effect of spin is not large
enough.

7 Description of vibrionic systems

In the next section we will explain basic tools for description of the systems where Jahn-
Teller effect take place. Although the tools are rather general, we will make example
from transition metal oxides. The first subsection will provide short description of Cu
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or Mn based compounds. In the second subsection we will derive effective Hamiltonian
for Jahn-Teller distortion. In the third subsection we will consider the simplest case
of coupling doubly degenerated electronic state to the single vibrational mode. In the
last subsection we will describe first non-trivial coupling of electronic doublet with two
vibrational modes. At the end the short discussion of the higher terms is included. The
notation used in this section: E will denote doubly degenerated electronic state and with
Greeks letters we will mark vibrionic state (example ǫ is two dimensional irreducible
representation).

7.1 Cu2+ and Mn3+ oxides

The valence orbitals in Cu2+ are 3d orbitals and in many cases (like La2CuO4 , CuFe2O4)
the transition metal ions are surrounded by 6 oxygen ions forming octahedron. The
structure is often called perovskite structure. 3d orbitals are five fold degenerated, but
in the crystal field of O2− the spherical symmetry is broken into octahedral. A simple
reduction of 3d orbitals in the cubic crystal field show that five-fold degeneracy reduce into
two-fold degenerated orbitals: dx2−y2 , d3z2−r2 often marks as eg orbitals and dxy, dyz, dzx
or t2g orbitals. These functions are plotted in Fig.3a. The eg orbitals extends towards
the oxygen ions which have negative charge so in these orbitals the energy is raised by
the Coulomb interaction. On the other hand t2g orbitals point away from the oxygen ions
and therefore have lower energy4.

(a) 3d orbitals in crystal field [6] (b) Energy levels [7]

Figure 3: Energy levels in the crystal field are drawn for (a) spherical, (b) cubic and
(c) tetragonal symmetry. In the tetragonal symmetry the octahedron is elongated in z
direction.

Since eg levels lie higher, we can describe the configuration of Cu2+ as having one
hole in the highest orbital. Hole is in the electronic doublet, which belongs to the E
irreducible representation of Oh symmetry group and because of Jahn-Teller effect it has
to be unstable.

4Reader is invited to calculate the splitting using perturbation theory. The result is that energy of
splitting for eg versus tt2g is 3:2.
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7.2 Linear coupling term

The starting point for linear coupling is once again Eq.5, actually just linear term. The
system is in one of the degenerated electronic states

φTa(~r, ~u) =
∑

i

aTa

i (~u)φTα

i (~r), (16)

where φTa is a linear combination of the electronic eigenstates which transform according
to the degenerated irreducible representation Ta and aTa

i are coefficients in the expansion.
The linear part can be rewritten

∑

Tb,i,j,k

qTb

i aTa∗

j aTa

k

〈

φTa

j

∣

∣

∣

∣

∂H

∂uTb

i

∣

∣

∣

∣

φTa

j

〉

= (17)

∑

Tb,i,j,k

qTb

i aTa∗

j aTa

k

〈

Ta

∣

∣HTb

∣

∣Ta

〉

〈TaTbTaj|TaTbki〉 (18)

where Tb marks irreducible representations of normal modes, i is component of the repre-
sentation Tb and j and k marks linear combination of electronic states. From first to the
second line we used Wigner-Eckart theorem, where 〈Ta||HTb ||Ta〉 is the reduced matrix
element and 〈TaTbTaj||TaTbki〉 are the Clebsch-Gordan coefficients. The coupling is de-
scribed by direct product of the irreducible representation and standard notation is that
we mark certain coupling as Ta ⊗ Tb.

Variation of Eq.18 with the respect to the undetermined coefficients aTa

j leads to the
effective potential part of the Hamiltonian, which acts on certain degenerate representa-
tion Ta. Matrix form of this potential is

(HJT )i,j =
∑

Tbk

qTb

i 〈Ta||HTb||Ta〉〈TaTbTai||TaTbjk〉. (19)

The complete Hamiltonian includes diagonal kinetic and elastic part as well higher that
linear vibrational terms, whenever they are important.

7.3 E ⊗ β

E is two dimensional irreducible representation of electronic states |E1〉, |E2〉, which is
coupled to the single normal mode vibration β. The Clebsch-Gordan coefficients for this
case are ±1 and simple Hamiltonian can be written:

H =

(

−1

2

∂2

∂u2
+

1

2
u2

)

+ Luσz, (20)

where I stands for the identity matrix, σz is the third Pauli matrix and L = 〈Ta||HTb||Ta〉.
The solutions of this problem are trivial, since the origin of the harmonic oscillator is only
displaced for a distance ±L and now the potential minima are −L2/2. The eigenfunctions
are harmonic oscillator wave function with origins in ±k and are two fold degenerated.
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7.4 E ⊗ ǫ

ǫ is two dimensional irreducible representation of the normal mode and E ⊗ ǫ marks the
coupling of electronic doublet with vibrational doublet. After calculating Clebsch-Gordan
coefficients we get the Hamiltonian:

H =
1

2

(

∂2

∂u1

+
∂2

∂u2

+ u2
1 + u2

2

)

I − L

[

−u1 u2

u2 u1

]

(21)

where u1,2 marks normal coordinates, L reduced matrix element and I is the identity
matrix. The potential part of the Hamiltonian in the u1, u2 plane is seen on Fig.4 and
the shape is so-called Mexican hat. The potential part is often referred as adiabatic
potential energy sheet or APES; since it is the solution of the problem in adiabatic limit.

Figure 4: Potential surface in the u1, u2 plane for coupling of electronic doublet with
vibrational doublet.

From the shape of the potential part we can notice that ground state should be
continuously degenerated. Useful parameterization is u1 = u sin(φ) and u2 = u cos(φ) and
since we are interested only in the ground state, the potential part should be diagonalized.
The transformation matrix is

T =

[

cos φ

2
sin φ

2

− sin φ

2
cos φ

2

]

(22)

and Hamiltonian in the new basis is

H ′ = THT−1 =

(

− ∂2

∂u2
− 1

u

∂

∂u
− 1

u2

[

−1
4
+ ∂2

∂φ2

∂
∂φ

− ∂
∂φ

−1
4
+ ∂2

∂φ2

]

+ u2

)

+
1

2
Lu

[

−1 0

0 1

]

(23)
and the basis states are |1, 2〉 = cos(φ)|E1〉∓sin(φ)|E2〉. If the kinetic energy is neglected,
the ground state is |1〉 with energy −1

2
L2. Solution of the whole Hamiltonian goes beyond

the scope of this seminar. The ground state solutions are still degenerate, so others terms
are needed for some more symmetry breaking. Derivation of higher orders term is based
on the theory of tensorial sets and also goes beyond this seminar, but idea is still the
same: Find which terms in the electronic-vibrational coupling are allowed by symmetry
group and in the same manner as in the linear term derive the effective Hamiltonian. It
turns out that the quadratic term is

1

4
k

[

−u2
1 − u2

2 2u1u2

2u1u2 u2
2 − u2

1

]

+ u2 =
1

4
ku2

[

− cos(3φ) sin(3φ)

sin(3φ) cos(3φ)

]

. (24)
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where first is written in base |1〉, |2〉 and second in the potential diagonal base |1〉, |2〉. This
term becomes important only when R is large, since R2 dependence, and it is important
when linear coupling is strong. The potential surface becomes so-called warped Mexican
hat with 3 minima. The lowest energy is now at the angles φ = 0,±2π/3.

7.5 Case of Cu2+

Cu2+ ion together with the 6 oxygen ions forms the octahedron. We would like to find
what is the Jahn-Teller deformation of such system. First we need to find 2 dimensional
normal modes of the octahedron. This means reducing the 3 × 8 = 24 dimensional
representation and find basis states for certain 2 dimensional representation. This task
is straightforward but time consuming, so we will just write down the basis vector for
the normal mode in cartesic representation: u1 = (x1 − x4 − y2 + y5)/

√
2 and u2 =

(2z3−2z6−x1+x4−y2+y5)/
√
6, where x, y, z are coordinates of ions and suffixes denote

the ion number as marked on figure 5.

(a) Normal mode basis vector u1 (b) Normal mode basis vector u2

Figure 5: Normal modes of the 2 dimensional irreducible representation for octahedron
[8].

In the previous subsection we saw that using linear and quadratic terms the minimum
of the potential energy is at three angles φ = 0,±2π/3 in the u1 − u2 plane. The
angle φ = 0 correspond to the u2 vector and is tetragonal distortion along the z axis
as seen on figure 5b. The solutions at the angle φ = ±2π/3 are just the other two
tetragonal distortion in x and y directions. The later is easily seen by forming appropriate
linear combination of u1,2: −1/2u1 ±

√
3/2u2 in the Cartesian coordinates. Cu2+ ions in

the perovskite structure has usually strong tendency to form a complexes in which two
nearest neighbors form a square and other neighbors out of the plane form an extended
octahedron. Probably the most famous case is the La2CuO4 , where the in-plane Cu−O
distances are 1.90 Å and perpendicular to the plane the distances are 2.5 Å. The tetragonal
distortion has strong influences on the electronic properties of the crystal, but this is now
another story . . .
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8 Conclusion

The intension of this seminar was to give a gentle introduction to the Jahn-Teller effect.
This is why on basic notions are given, although there are many related phenomena, which
could also be described. Reader should be aware that Jahn-Teller (and related types of)
effects are a large field of research, with strong interplay of theory and experiment. It is
important effect in various different systems like transition metal oxides, fullerenes . . . The
example of Cu2+ from the last section was actually research motif of the Karl Müller and
Johannes Bednorz, who unexpectedly discovered high-temperature superconductivity in
cuprate-perovskite ceramics of LaBaCuO. Fascinating thing is that it all started with a
simple problem of CO2 stability and rather “long exercise” from the group theory.
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