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1 Introduction

When speaking of crystals it is impossible to overlook the fact that they are more or less symmetric
structures. Consequently, they are like a playground for the theory of discreet groups. Each crystal
can be described by a space group, whose elements have the property that they transform crystal
lattice back into itself. These transformations are of different kinds: translation, point group trans-
formations (which leave at least one point unchanged) and their combination. However, they are all
unitary. Such classical theory of symmetry is essentially a three-dimensional study, i.e. each lattice
point can be specified by a vector r = (x, y, z) and one considers the effect of symmetry operations
on it.

However, the study of the theory the symmetry did not advance much between the derivation
of 230 space groups just before 1900 and the introduction of the use of the idea of antisymmetry
by Schubnikov in 1951. The concept of antisymmetry had been suggested by Heesch [1] long before
Schubnikov’s work, but its importance was not realized at the time. Schubnikov’s basic idea was to
give the x, y, z coordinates of a point a forth coordinate s which can take only two possible values
[2]. If we distribute the values of s to atoms in a lattice in some regular fashion, it is possible for
part of the symmetry to survive. If we include a new operation, operation of antisymmetry r, which
changes between values of s, and consider this in a conjunction with all the ordinary point groups
and space groups operations, it is possible to obtain a collection of new point groups and space
groups which are called black and white groups, or magnetic groups, or Heesch-Schubnikov groups.
The real usage of such groups becomes apparent if we think of s as being the two allowed values
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of a magnet’s direction, then r is the operation which reverses a magnetic moment and is often
regarded as being the operation of time-reversal. The introduction of neutron diffraction techniques
has made it possible to determine the orientation of the magnetic moments of the various atoms
or ions in magnetically ordered crystals. Then the magnetic groups proved to be very relevant for
the crystallographic description of the symmetry of very large number of magnetic crystals, first
example of such usage being given by Donnay et al. (1958).

2 Classification of magnetic or Schubnikov groups

Let us restrict the internal degrees of freedom s to just two values, which can be looked upon as
two ’colours’ (black-white). A change of state of this internal property can described by an operator
r, which changes colour (black into white and vice versa), so that r2 = E. By enlarging the point
groups with r we obtain new groups besides the ordinary geometrical ones.

• Color or Schubnikov groups of type I These groups describe object that are monochro-
matic, i.e. having a definite color, say white. The operator r is then excluded from such
group. They are in fact identical to the geometric point groups

MI = G (1)

In all there are 32 monochromatic point groups.

• Color or Schubnikov groups of type II (the gray groups) System with this symmetry
type possess identical and overlapping distribution of two colors, say black and white (hence
name gray). Such groups may describe the symmetry of paramagnetic or diamagnetic systems
where there are equal numbers of up and down spin states, and the application of the operator
r will leave the system invariant. The corresponding symmetry group can be expressed as

MII = G ⊕ rG = G ⊗ {E, r} (2)

where G is the geometric point group associated with the atomic arrangement of the system.
Here G is invariant subgroup of MII with index 2 1. We should notice that equality (2) can
be written because r commutes with all the elements of G.

• Dichromatic or Schubnikov groups of type III Groups that belong to this class do not
contain r as a separate element, but include elements comprising of products involving r. To
elucidate the role of such groups in describing the symmetry of physical systems, we consider
the simple dichromatic equilateral triangle shown in Fig. 1.

Obviously r is not a symmetry operation of the colored triangle. Moreover, among the elements
of G = C3v we find that those of the subgroup C3 (rotations for 120°) leave the colored
triangle invariant, while all the reflection operations do not. However, if we multiply these
reflections by r, the compound operation leaves the triangle invariant. Thus the elements,
E,C3, C

−1
3 , rσ1, rσ2, rσ3 form a group M = CIII

3v which we call a color group. We may notice
that in contrast to gray group CII

3v , CIII
3v does not have r as an element by itself. The structure

of CIII
3v is typical of all color point groups, and we may write

MIII = N ⊕ r(G −N ) = N ⊕ rSN , S ∈ (G −N ) (3)

1Index of a subgroup is number of groups elements divided by the number of subgroup elements.
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where N as a normal 2. subgroup of G of index 2. In principle we can take any ordinary
point group G of even order, determine all its subgroups of index 2, and construct from each
a new color group. Last equality in (3) is written using the Lagrange’s theorem3, since for
S ∈ (G −N ) left coset SN contains no elements in common with N .

CI
3v CII

3v CIII
3v

Figure 1: Color point groups of types I, II and III associated with C3v

The number of subgroups of index 2 of a point group G is given by

2n − 1; where n is number of independent generators of G. (4)

This constitutes the maximum number of color groups that may be constructed from G. In all there
are 58 dichromatic point groups.

3 Dichromatic space groups

Dichromatic Bravais lattices The concept of the color may equally be applied to the translational
symmetries as it is applied to point group symmetries. We can construct dichromatic Bravais lattices
by introducing a colored translation rτ0, where τ0 cannot be identity. A dichromatic translation
group Tc is then defined as

Tc = T2 ⊕ rτ0T2 (5)

where T2 is a subgroup with index 2 of one of the monochromatic 14 Bravais lattices.
In two dimensions, 5 extra dichromatic Bravais nets can me constructed, and are shown in Fig.

2. In three-dimensions there are some restrictions on τ0 [3] giving together 22 dichromatic classes.

Since a space group comprises a combination of some Bravais lattice with a point subgroup it
is possible to construct dichromatic space groups by combining either

2A subgroup N, of a group G, is called normal subgroup if it is invariant under conjugation; that it, for each
element n in N and each g in G, the element gng−1 is still in N .

N ⊳ G ⇔ ∀n ∈ N , ∀g ∈ G, gng−1
∈ N

3Lagrange’s theorem: Let S be a subgroup (of order n) of G (of order g). For any gi ∈ G the elements of Sgi form
a right coset. If gi ∈ S the coset is equal to S . If not the coset contains no elements in common with S . Given S a
set of g/n elements gi of G may be found such that any element of G may be written in a form spgi, sp ∈ S . Equally
for the left coset.
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Figure 2: Two-dimensional dichromatic Bravais nets.

(a) a dichromatic point group with a monochromatic Bravais lattice

(b) a dichromatic Bravais lattice with a monochromatic point group.

4 The time-reversed representation

One most obvious application of color groups is description of magnetic crystals. The r operator
which changes color is in this case the time reversal operator T . T is a symmetry operator for the
Hamiltonians of many physical systems. For a crystalline system with time-reversal symmetry the
full point group will then be the product of the ordinary point group with the identity and the
time-reversal, since the latter commutes with the point group operations. In language introduced
above this would be the gray group.

However, this can only be true for non-magnetic crystals, since T reverses the direction of
currents and spins and consequently the direction of magnetization in magnetically ordered crystals.
Reversion of color is manifested in reversion of spin. Still magnetic crystals may be invariant under
an operation, which is a product of T with a rotation, even though it is not invariant under T itself.
Recalling the definition of color group of type III we see that the symmetry group of such crystals
is just the latter.

As an example, we consider a ferromagnetic crystal which, disregarding the time-reversal, has
symmetry group D3. Above critical temperature TN , in the magnetically disordered state the
inclusion of time-reversal lead to larger gray group D3⊗{E,T }, since there is no magnetic moment.
Below TN , the crystal becomes ferromagnetic with magnetization along the three-fold axis. Since
the two-fold rotations C2 about axes in the xy-plane reverse the direction of magnetization they are
no longer symmetry operations and nether is T . However, the product T C2 remains as symmetry
operations and the new symmetry group contains {E,C3, C

−1
3 ,T C1

2 ,T C
2
2 ,T C

3
2}. We should notice

that tree-fold rotations C3 consist a subgroup of original D3, which is normal subgroup of index 2.
For visual presentation one can still use the dichromatic Fig. 1.

4.1 Theory of corepresentations

In order to construct the representations of magnetic groups we first need to study the effect of T
on a representation (Rep) basis set. We consider, in particular the case when T , and to this effect
any antilinear operator, is applied to a Rep basis function following the action of some linear (or
antilinear) operator O.

T Oψµ = T
∑

ψνΓνµ(O) =
∑

(T ψν)Γ
∗
νµ(O) =

∑

νλ

ψλΣλν(T )Γ∗
νµ(O) (6)

4



since T complex-conjugates (c-conjugates) all quantities to its right. This shows that the product
of the two operators does not lead to just a product of the corresponding matrix representation, but
leads, in addition, to a c-conjugation of the matrix representative of O. Therefore, when T is in-
cluded in a symmetry group, we must seek not ordinary matrix representations, but representations
consistent with (6) (so called corepresentations (CoRep)).

4.1.1 Construction of corepresentations

We consider magnetic group M, which we write as

M = N ⊕AN (7)

where N is a unitary subgroup of index 2 of M, and A 6∈ N is an antiunitary element of M (either
A = T (for gray M) or A = T S, S ∈ G −N (for dichromatic M)). We denote the elements of N
by R,T and those of AN by A,B, but we should remember that A2,AB ∈ N (since N is normal).

We start with applying R to a basis set {ψµ} ≡ Ψ which engenders an Irrep ∆ of N , namely,

Rψµ =
∑

ν

ψν∆νµ(R), R ∈ N

RΨ = Ψ∆(R). (8)

Next, we define the time-reversed set Φ ≡ {φµ} = {T ψµ} such that

RΦ = Φ∆̌(R), (9)

but since T R = RT , we have

RT Ψ = T (RΨ) = T (Ψ∆(T ))

= (T Ψ)∆∗(R) = Φ∆∗(R) (10)

∆̌(R) = ∆∗(R) (11)

The time-reversed representation ∆̌ is identical to the complex conjugate representation ∆∗.
If we set A = ST , where S ∈ (M − N ), then the basis vectors AΨ generate a generalized

time-reversed representation, namely,

R(AΨ) = (AΨ) A∆(R) (12)

= RST Ψ = S(S−1RS)T Ψ

= (ST Ψ)∆∗(S−1RS) = (AΨ)∆∗(S−1RS) (13)

A∆(R) = ∆∗(S−1RS) (14)

where ∆(S−1RS) is an Irrep conjugate to ∆(R), since N is a normal subgroup.
We now construct the Rep Γ engendered by the combined basis F = [Ψ,AΨ],

RF = FΓ(R)

= [Ψ,AΨ]

(

∆(R) 0
0 ∆∗(S−1RS)

)

, ∀R ∈ N (15)
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Next we apply an operation B = AT, T ∈ N and obtain

BΨ = ATΨ = AΨ∆(T ) = (AΨ)∆∗(T ) = (AΨ)∆∗(A−1B)

B(AΨ) = BAΨ = Ψ∆(BA), BA ∈ N (16)

Therefore

BF = FΓ(B)

= [Ψ,AΨ]

(

0 ∆(BA)
∆∗(A−1B) 0

)

, ∀B ∈ AN (17)

It is easy to see that the matrix representatives Γ do not obey the ordinary multiplication relations
associated with unitary groups, but rather

Γ(R)Γ(S) = Γ(RS) Γ(R)Γ(B) = Γ(RB)
Γ(B)Γ∗(R) = Γ(BR) Γ(B)Γ∗(C) = Γ(BC)

(18)

where R,S ∈ N and B, C ∈ AN .

The set of unitary matrices defined by (15) and (17) form a corepresentation of M, derived from
unitary Irrep ∆ of its normal subgroup N and satisfying the multiplication rules (18)

4.1.2 Reality of Irreps

All the CoReps comprise of Irreps ∆, their c-conjugates ∆∗ and conjugate Irreps derived from ∆
and ∆∗. Therefore it is useful to know, whether ∆ and ∆∗ are equivalent, which is connected with
the concept if reality.

We consider an Irrep ∆ℜ to be real if

∆ℜ(R) = (∆ℜ(R))∗, ∀R ∈ N . (19)

An Irrep ∆ is potentially real if it is equivalent to a ∆ℜ, even when ∆ is complex. Moreover, a
potentially real ∆ is equivalent to its complex conjugate ∆∗, since

∆ℜ = U−1∆(R)U = (U∗)−1∆∗(R)U∗

∆∗(R) = (U(U∗)−1)−1∆(R)(U(U∗)−1) ∼ ∆(R) (20)

However, ∆ may be equivalent to ∆∗ but may not be equivalent to any real Irrep.
To find the nature of Irrep Frobenius/Schur character sum rules prove to be very useful. They

state that [3]

∑

R∈N

(µ)χ(R2) =







n (µ)∆ is a real Irrep,

0 (µ)∆ is a complex Irrep,

−n (µ)∆ is a pseudo-real Irrep.
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4.1.3 Equivalence of CoIrreps

Before studying the reducibility of representations, we explore the equivalence relationship among
CoIrreps of the group M. We already know that if we apply unitary transformation U of the
basis F , representation of unitary R in the transformed set Γ′(R) is connected to the original Γ(R)
through

Γ′(R) = U−1Γ(R)U (21)

In order to obtain the transformation of Γ(B) under U , we consider the action of B on F ′ = FU

BF ′ = F ′Γ′(B) = FUΓ′(B)

BF ′ = BFU = FΓ(B)U∗ = (FU)U−1Γ(B)U∗. (22)

which yields
Γ′(B) = U−1Γ(B)U∗. (23)

Equations (21) and (23) define the equivalence between Γ′ and Γ.

4.1.4 Reducibility of Γ

The question of reducibility of Γ entails whether there exists a unitary transformation that will
render an equivalent block-diagonal Rep Γblock or not. We need to find a transformation that block-
diagonalizes Γ(R) and Γ(B) instantaneously. Because of the structure of Γ, we should examine the
relationship between the Irreps ∆(R) and A∆ = ∆∗(S−1RS).

We separate different cases:

(i) ∆(R) 6∼ A∆ = ∆∗(S−1RS). We examine the reducibility of Γ by exploring the possibility of
constructing a unitary matrix U that reduces Γ

Γ(R) U = U Γ′(R)
[

∆(R) 0
0 A∆(R)

](

a b

c d

)

=

(

a b

c d

)[

∆′(R) 0
0 ∆′′(R)

]

[

∆(R)a ∆(R)b
A∆(R)c A∆(R)d

]

=

[

a∆′(R) b∆′′(R)
c∆′(R) d∆′′(R)

]

(24)

Since ∆ 6∼ ∆′′ and A∆ 6∼ ∆′, b and c must be zero. Then U is block-diagonal matrix and
therefore cannot block-diagonalize Γ(B). Hence the corresponding Γ is irreducible.

(ii) If ∆(R) ∼ A∆ = ∆∗(S−1RS) procedure is longer and can be found in [3]. The result is that
Γ can be reduced in this case.

All together we have tree possible types of CoIrreps:

(a) AΨ = Φ reproduces the set Ψ. The CoRep (µ)Γ of M corresponds to a single Irrep (µ)∆ of
N , and has the same dimension.
In this case no new degeneracy is introduced by the coset AN .
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(b) AΨ produces the set Φ which is independent of the set Ψ, but which also forms a basis for
(µ)∆ of N . The CoRep (µ)Γ of M corresponds again to a single Irrep (µ)∆ of N , but with
twice the dimension. In this case the dimension of (µ)∆ is doubled.
Possible extra degeneracy may appear.

(c) The set Φ = AΨ is independent of Ψ, and forms a basis for the Irrep (ν)∆ of N which is
inequivalent to (µ)∆. In this case the CoRep (µ)Γ corresponds to two inequivalent Irrep of N .
Whole Γ is irreducible as we discussed in case (i).
The antiunitary operators cause (µ)∆ and (ν)∆ to become degenerate.

This classification is summarized in the following table:

Type χA(R) Equivalence Symmetry A∆ = ∆(R)

(a) = χ(R) A∆(R) = V −1∆(R)V V ∗V = +∆(S2) if ∆(S2)) = ∆(E)
(b) = χ(R) A∆(R) = V −1∆(R)V V ∗V = −∆(S2) if ∆(S2)) = −∆(E)
(c) 6= χ(R) A∆(R) 6∼ ∆(R) - No

In the above classification an extra degeneracy was meant in respect to the case where the
classical group N is the appropriate symmetry group. This can be illustrated with eigenfunctions
and eigenvalues of a Hamiltonian H, Fig. 3. Here ψi is an eigenfunction of H belonging to Irrep
(i)∆ and Ei is its corresponding eigenvalue; φi = Aψi is the function from the transformed set. In
case (b) the degeneracy will arise between two different eigenfunctions which belong to the same
Irrep of N , but in case (c) this degeneracy will arise between a pair of eigenfunctions which belong
to inequivalent Irreps of N . One can imagine what consequences this leaves to the spectrum. The
discussion holds also for the gray groups. It is then easy to see what will happen to the energy
spectrum is case we add to the ’classical’ symmetries of the Hamiltonian also the time-reversal
symmetry.

(a)

(b)

(c)

(i)∆,

(i)∆,

(i)∆,

(i)∆,

(j)∆,

(i)Γ,

(i)Γ,

(i,j)Γ,

ψi

ψi

ψi

ψi

φi

φi

[ψi, φi]

[ψi, φj ]

Figure 3: Changes in the degeneracies of the eigenfunctions and eigenvalues for different types of
CoIrreps.

4.1.5 Dimmock and Wheeler’s character sum rule

To identify the type of CoIrrep associated with a given Irrep ∆ of N , Dimmock and Wheeler [4]
devised a test in terms of a character sum rule similar to that of Frobenius and Schur for identifying
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the reality type of an Irrep.

∑

B∈AN

(µ)χ(B2) =







n type (a),
−n type (b),
0 type (c).

4.2 Example: CoIrreps of dichromatic groups derived from D4 (422)

The unitary group D4 has three subgroups of index 2: C4,D2,D
′
2. These subgroups consist of

element: C4 = {E,C4, C
−1
4 , C2}, D2 = {E,C2, U

1, U2} and D′
2 = {E,C2, U

1
d , U

2
d }. Fig. 4 shows the

axis of rotation for these group elements.

C2, C4, C
−1
4

U1
d

U1

U2
d

U2

Figure 4: Axes of rotation for group D4

The character tables for Irreps of D4, C4 and D2 are: We examine different possible subgroups:

Figure 5: Irreps of D4, C4 and D2

(i) N = D2 and A = T C4.
This induces the dichromatic point group 422.
The DW sum-rule test yields

∑

B∈AN

(µ)χ(B2) = (µ)χ
(

(T C4)
2
)

+ (µ)χ
(

(T C−1
4 )2

)

+ (µ)χ
(

(T U1
d )

2
)

+ (µ)χ
(

(T U2
d )

2
)

= 2(µ)χ(C2) + 2(µ)χ(E)
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and applying this test to the Irreps of D2, we obtain

∑

B∈AN

(µ)χ(B2) =

{

4 for (1)∆, (2)∆,

0 for (3)∆, (4)∆

From this we can conclude that Irreps (1)∆ and (2)∆ are of type (a), so that ∆(B) = ∆(R)
where B = RA. The CoIrreps of the nonunitary 422 obtained from (1)∆ and (2)∆ of D2 are
given in Fig. 6.

For the (3)∆ and (4)∆, the DW test specifies they are type (c). If we start with (4)∆ we can
check that (4)∆(S−1RS) = (3)∆.

R A−1RA (4)∆(R)

E E (4)∆(E) = 1

C2 C2
(4)∆(C2) = −1

U1 U2 (4)∆(U2) = 1

U2 U1 (4)∆(U1) = −1

According to (15) and (17) we can construct the two-dimensional CoRep of 422 from (3)∆ and
(4)∆, Γ((3,4)∆). It is given in Fig. 6.

Figure 6: CoIrreps of 422 and 422. Θ stands for time-reversal operation T .

(ii) N = C4 and A = T U1.
This induces the dichromatic point group 422.
Since

(

T U1
)2

=
(

T U2
)2

=
(

T U1
d

)2
=

(

T U2
d

)2
= E, the DW sum-rule yields +4 for all the

Irreps of C4. Hence, all the CoIrreps of 422 are of type (a). Table of CoIrreps of 422 is given
in Fig. 7
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Figure 7: Character table for the CoIrreps of 422. Θ stands for time-reversal operation T .

5 Symmetry properties and degeneracies in the electronic band

structure of a magnetic crystalline material

Now that we are familiar with the mathematical point of view, we would like to make use of it in
a physical context. Beside the fundamental description of magnetically ordered crystals there are
many more applications of symmetry arguments.

Because of translational symmetry the wave functions in a crystal can be characterized with
wave vector k and are of the form ψk(r) = eik·ruk(r) (Bloch theorem). Because it should posses
the translational symmetry, uk(r) must be invariant under the translations for a vector of Bravais
lattice. Since Hamiltonian is invariant under the whole space group of the crystal, for a particular
symmetry operation R, in case ψ(r) is an eigenfunction of Hamiltonian then PRψ(r) should also be
an eigenfunction with the same energy. Let R be an element from point group P. Since

PRψk(r) = eiRk·ruk(R
−1

r) = eiRk·rũRk(r) = ψRk(r)

where we used the fact that ũRk(r) is again some periodic function. We can see that all Bloch
functions with k

′ = Rk will have the same energy

Ek = ERk.

If the system posses also time-reversal symmetry,

Ek = E−k,

since
T ψk(r) = e−ik·ru∗k(r) = e−ik·rũ−k(r).

In this case all the wave vectors transformed under the point group P ′ = P ⊕ IP, where I is
inversion, will have the same energy.

Suppose that the symmetry of a magnetic crystal is described by the non-unitary group M =
N⊕AN , A = T S, then it can be shown that the anti-unitary elements cause the energy eigenvalues
at k and Sk to be identical [5]. Then energies corresponding to eigenvectors transformed under the
elements of point group P ′ = P ⊕ ISP will be equal. It should be noted that P ′ is a classical, type
I Schubnikov group.

Set of vectors Rk is called a ’star’. For some special wave vectors k there might exist operations
R under which they are invariant. Group of all such operations R is called the little group of k.
The functions uk(R

−1
r) form basis vectors for its irreducible representations.
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Previously mentioned invariance of wave vectors is meant in a broader sense. When considering
only unitary point group operations R k is equivalent to k + K for any reciprocal lattice vector
K. For magnetic space groups the definition of magnetic little group of Mk is slightly different. It
consists of:

(i) those unitary elements (∈ G
k) of the magnetic space group that ’send’ k into k+K

(ii) those anti-unitary elements (∈ T G
k

I
) of the magnetic space group that ’send’ 4

k into −k+K

where K is again a vector of reciprocal lattice. Therefore we may write

Mk = G
k ⊕ T G

k

I .

The little groups are important for determination of irreducible corepresentations of dichromatic
space groups, since the procedure discussed in 4 gives us decomposition into CoIrreps only for the
dichromatic point group. Since Hamiltonian is invariant under the whole dichromatic space group
it is the decomposition of space group into its CoIrreps from which we can read the degeneracies in
energy spectrum and study the symmetry of eigenstates.

6 Spin waves

When describing the structure of magnetically ordered crystals we have assumed that each individual
magnetic moment, or spin, is pointing statically. However at any temperature rather than zero this
in not true and we have some fluctuation of the spins. Furthermore, with external influence we can
produce spin excitations in the ordered crystal. Using symmetry arguments we can predict possible
degeneracies in the spectra of spin excitations, their interaction with lattice vibrations, allowed
transitions due to external neutrons and photons, etc.

It is convenient to analyse the variation in the orientation of the spin in terms of normal modes
(characterized with wave vector k) where the quanta is called ’magnon’. The number of allowed
magnon frequencies for a given wave vector k in a magnetic crystal is determined by the number
of magnetic atoms in the unit cell of the crystal. One thing we can address using the theory
of corepresentations is the symmetry properties of spin-wave relations. Namely, we can label the
magnon dispersion relations with the labels of the corepresentation of the appropriate magnetic space
group and predict the degeneracies at various points in the Brillouine zone. More precisely, the wave
function of a magnon with wave vector k must belong to one of the irreducible corepresentations of
magnetic little group Mk.

6.1 Magnon interaction with phonons

Traditionally it is common to assume that to a very good approximation the lattice vibrations of a
crystal are unaffected by the behaviour of any magnetic moments associated with atoms in crystal.
Therefore we usually assume that magnetic moments are frozen in their equilibrium positions and
not involved in any translational motions. However, so called magnetoelastic waves, which involve

4Group element T S ’sends’ k into −k+K in a sense that

p̂T Sψk = T T
−1p̂T Sψk = T (−~Sk)ψSk = ~(−k+K)T Sψk

where we used that T −1p̂T = −p̂ and Sψk = ψSk.
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both displacement in the position of the atoms and the orientation of the spin vectors were expected
theoretically, but also proved experimentally[6]. What is interesting is that it was measured that a
given magnon may interact appreciably with certain phonons but not with others [7]. Explanation
to that lies in the symmetry.

If H is the Hamiltonian used to describe the coupled magnetoelastic vibrations of a magnetically
ordered crystal, any given magnetoelastic wave must belong to one or other of the irreducible
representations of the group of H, which will be determined by the symmetry of the crystal itself.

In connection with experiments it is tempting to establish selection rules for magnon-phonon
interaction, and it is should be done for special lines of symmetry in the Brillouin zone. By this we
mean the possibility of lifting of an accidental degeneracy between a phonon and a magnon with
the same value of k, caused by magnon-phonon interaction. Rule goes as follows: If k is on line of

symmetry, the degeneracy can only be lifted if the magnon and the phonon have the same symmetry,

i.e. they belong to the same irreducible representations, or corepresentation, of the space group of

the crystal [8]. Since for phonon symmetries it is common to use the classical space group, say G, in
testing the compatibilities it is necessary to use the grey group derived from G.

Let us assume that group theory has been used to determine which irreducible representations
or corepresentations describe the phonons and magnons in crystal, and that it may be possible
to distribute these uniquely among the observed branches of the dispersion relations. Then it is
possible to see whether any given magnon branch which intersects a certain phonon branch in the
non-interaction approximation will be expected to couple with the phonon branch when magnon-
phonon interaction is included. Fig. 8 shows experimental result [6] indicating the magnon-phonon
interaction measured in uranium dioxide. For temperature T = 90K well above the (transition) Neel
temperature they first measured pure phononic dispersion relation ω(k). Whereas for temperature
T = 9K which is below the Neel temperature, so that crystal is magnetically ordered, dispersion
is altered due to interaction with magnons, whose dispersion would in the non-interacting limit
intersect with the phononic one. This is sketched in the left part of 8.

E(k)

k

phonon-like

phonon-like

magnon-like

magnon-like

Figure 8: Left: Sketch of degeneracy lifting between the phonon and magnon dispersion as opposed
to the non-interacting limit, right: the dispersion curves for the excitations of uranium dioxide in
the [00ξ] direction at 9 and 90°K. At 90°K the curve corresponds to the acoustic phonon branch
which is modified at 9°K by the magnon-phonon interaction[6].
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A Supplement: The time-reversal operator

Let us assume that Hamiltonian is time invariant. From the structure of Schrödinger equation and
its conjugation, we can conclude that we need to apply the time inversion to the latter to retain the
form of former

HΨ(x, t) = i~
∂

∂t
Ψ(x, t),

HΨ∗(x, t) = −i~
∂

∂t
Ψ∗(x, t) ⇒ HΨ∗(x,−t) = i~

∂

∂t
Ψ∗(x, t) (25)

which demonstrates that if Ψ(x, t) is a wavefunction that satisfies the Schrödinger equation, then
Ψ∗(x,−t) must be a degenerate solution.

Thus time-reversal must involve both complex conjugation and time-inversion operation

T = UK0 (26)

where U is a unitary operator and K0 the conjugation operator, which satisfies K2
0 = I,K−1

0 = K0.
T has the properties:

• It is antilinear

T (aΨ + bΦ) = a∗T Ψ+ b∗T Φ (27)

• It is antiunitary

(T Ψ,T Φ) = (Φ,Ψ) (28)

14



• The elements of a point or space group, associated with a physical system, commute with the

time-reversal operator

T R = RT (29)

and therefore have real representations.

• Transformations of the wavefunction ψ(x) = 〈x|ψ〉 in the absence of spin under T :

T |ψ〉 =

∫

d3x ψ∗(x) |x〉, where we set the phase T |x〉 = |x〉 (30)

• Transformations of the operators under T :

T BT −1 = ǫBB, ǫB = ±1 for a general unitary B (31)

T xT −1 = x (32)

T pT −1 = −p (33)

T LT −1 = −L (34)

For the nonrelativistic spin-12 particles we demand

T ST −1 = −S → T JT −1 = −J (35)

which is satisfied with T = e−iπSy/~K0, D(T 2) = −I
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