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1 Introduction

The topic of this seminar are the symmetries of the finite box in three dimensional space. The main
goal is to find what sort of fields with correct momenta transform as irreducible representations under
the relevant symmetry groups. In order to do this, seminar will be separated in 5 sections, where
in Section 2 types of composite fields, that describe the particles in the box will be introduced. We
will note, that to have a proper theory these fields need to satisfy some conditions; these conditions
however will then have large consequences. In Section 3 the relevant groups O(3), Oh and C4v will
be introduced and their properties presented. Section 4 describes a general procedure to obtain good
fields, that can be used in lattice simulations. In Section 5 an example where the scattering particles
have zero total momentum will presented and in Section 6 an example with smaller symmetry will be
obtained by reducing the example from Section 5.

2 Composite fields

Although lattice QCD simulations are done both on meson scattering and barion scattering [also
plenty of other stuff], this seminar concentrates on meson scattering. However the procedure is general
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enough, so that it can be extended to barion barion and meson barion scattering.

A meson is composite field composed of two elementary quark fields:

M(~p) =

∫
d3~xei~p~xq̄(~x)Γq(~x), (1)

where q(~x) and q̄(~x) are two quark fields at a given point ~x in space, ~p is the momentum to which
the composite fields are projected to. This means that ~p is the momentum of the meson M . Γ is a
product of Dirac matrices, chosen in such a way, that the field has quantum numbers of the meson we
want. For instance if the meson is a pion, then it is a pseudoscalar particle, which means that it does
not change under rotation, however gets a minus sign under parity transformations. Then Γ = γ5.
Therefore the Γ structure defines how the meson field will act.1 A vector meson [e.g. ρ] will then be a
three component field, each component corresponding to a given polarization of the particle.

Some examples of the possible fields can be written down:

f1 = M(~p), Γ is scalar or pseudoscalar; (2)
f2i = Mi(~p), Γ is vector or axial vector; (3)

f3 = M(~p1)M
′
(~p2); (4)

f4 = Mi(~p1)M
′
i (~p2); (5)

f5i = Mi(~p1)M
′
(~p2); (6)

f1 and f2 correspond to single meson fields, while f3, f4 and f5 are double meson fields [physically
these describe scattering channels, while the previous describe "all" possible states]. Field f3 will be
of main interest in this seminar.

At this point the physical system that is of concern to this seminar will be described. This is a
finite box with periodic boundary conditions; meaning that the momenta particles can have are limited
to those momenta, that satisfy the boundary conditions. At this point the momenta are not limited to
some specific values, only the fact, that they are no longer a continuous variable [they are countably
infinite actually]. This means, that the integral in Equation 1 now becomes a sum over all allowed
momenta denoted by ~d:

M(~p) =

∫
d~xei~p~xq̄(~x)Γq(~x), ~p satisfies periodic b.c. (7)

So in order to have a proper theory, the momentum ~p in Equation 7 can only have values, that
satisfy periodic boundary conditions. This is the condition of the system and from this it follows, that
field combinations with specific momenta ~p need to be found. Before doing this, relevant groups will
be introduced in the following section.

3 Relevant groups

The relevant groups needed in this seminar are the O(3) continuous group, its subgroup the octahe-
dral point group Oh and the ditetragonal pyramidal point group C4v. Their geometric representation,
symmetry transformations and group character tables will be listed in the following subsections.

1For the purpose of this seminar this holds, however when charge parity is considered, then gauge operators in a
resulting meson field would also affect its quantum number.
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3.1 O(3)

The O(3) group is the group of 3× 3 real matrices with determinant detT (O(3)) = ±1. Sometimes it
is also written as O(3,R), where R denotes that it is over the real numbers. It is worth noting, that
angular momentum, only has SO(3) symmetry, which means that matrices with detT (O(3)) = −1
are not included. Therefore space inversion, or also known as parity, is not in the SO(3) group, how-
ever it is still a symmetry of the box and of the meson fields in it. It is this reason, why the O(3)
group is considered. However the way it will be considered is by writing it as the SO(3) for the ele-
ments that have detT (O(3)) = 1 combined with parity for the rest of the elements; O(3) = SO(3)×Z2

Geometric interpretation of the O(3) continuous group is presented in Figure 3. It is a unit sphere,
which represents, how a unit vector ~r can be transformed under the transformations that form the
O(3) symmetry group.

Figure 1: Geometric interpretation of O(3) symmetry; unit sphere.

The transformations that form the O(3) group are the transformations of the SO(3) group combined
with inversion. A general element of O(3) is then the product of identity or inversion and rotation for
angle α around some axis ~d.:

case of detT (O(3)) = 1 :

R(α, ~d) = e−iα
~d.~L (8)

case of detT (O(3)) = −1 :

R
′
(α, ~d) = −I e−iα~d.~L, (9)

where Li are generators of the continuous group SO(3)[in real space]:

Lx =

0 0 0
0 0 −1
0 1 0

 , Ly =

 0 0 1
0 0 0
−1 0 0

 , Lz =

0 −1 0
1 0 0
0 0 0

 . (10)

These are the rotation matrices in coordinate space, however much more interesting is what hap-
pens in wave function space. The states with O(3) symmetry can be characterized with 3 numbers:
l which denotes the representation [it also describes the angular momentum value], m which is the
projection of l on the z axis, and P which denotes parity. In case when P = +1 this is the SO(3)
subgroup with positive parity states and when P = −1 this is the SO(3) group with negative parity
states. This is then the O(3) group, which could also be written as the direct product SO(3) × Z2,
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where Z2 stands for parity symmetry.

As matrices R and R′ describe how the coordinate vectors rotate, a wave function basis of spherical
harmonics Ylm(θ, φ), which span the space of functions on a unit sphere is introduced; meaning that
any given function on a unit sphere can be written as a linear combination of spherical harmonics.
Rotation matrices on these states can be defined as:

Dl
m,m′

(α, ~d) =
1

4π

∫
dΩY ∗lm(θ, φ)R(′)(α, ~d)Ylm′ (θ, φ), (11)

and then the rotation of states is written as:

Y
′
lm =

∑
m′

Dl
m,m′

Ylm′ . (12)

The unitary matrices Dl
m,m′

are also called the Wigner D matrices in the case they only describe
rotations. In the case above they describe also reflections over mirror planes and improper rotations.

Characters for the representations l and given transformations are needed. For the case of the
SO(3) subrgoup this is straightforward, however for the rest it will be provided.
The characters of transformations of SO(3) will be the same for a given angle of rotation no matter
the axis of rotation. A simple way to see this is to consider a rotation through α about vector ~eu,
R~eu(α). To get a rotation through α about vector ~ev, a rotation through an angle δ about a vector ~en,
R~en(δ) is needed. Then the rotation through α about ~ev is:

R~ev(α) = R~en(δ)R~eu(α)R−1~en (δ). (13)

Note that the matrices R can be in any given representation; specifically they are interesting in the
space of spherical harmonics. The character of a representation for a given α is from this obviously
independent of the vector about which the rotation is, and only depends on the angle the rotation
rotates for. This is due to the fact, that the character is defined as the trace of a matrix representation;
the trace has a cyclicty property, from which it follows:

Tr[A] = Tr[RAR−1] = Tr[R−1RA] (14)

Now the characters for the SO(3) can be determined simply by considering rotations for a given angle
about the z axis:

R~z(α)Ylm(θ, φ) = Ylm(θ, φ+ α) =
∑
m′

Dl
m,m′

(~z, α)Ylm(θ, φ), where (15)

Ylm(θ, φ+ α) = eimαYlm(θ, φ) (16)

χl(α, proper) =
∑
m

Dl
mm(~z, alpha) =

l∑
m=−l

eimα (17)

=
−eiαl + eiαleiα

−1 + eiα
=

sin (l + 1/2)α

sinα/2
. (18)

In short for the SO(3) subgroup of the O(3) group the characters of the transformations will be
independent on the axis of rotation, however will be different for different angles of rotation. The
other part of the O(3) group consists of improper rotations, meaning a rotation and an inversion. The
characters of such transformations will then have a −1 prefactor depending on the representation:

χl(α, improper) = (−1)l
sin (l + 1/2)(α+ π)

sin (α+ π)/2
. (19)
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Using the above relations, characters for any given representation of the O(3) symmetry group can
be calculated.

3.2 Oh

The Oh group is the octahedral point group with added inversion [1]. It is the symmetry of a (empty)
box. Sometimes the octahedral group can be written as O(3,Z), where Z denotes, that the group is
over whole numbers; the representations will up to normalization be constructed from whole numbers
only. It is a finite subgroup of O(3,R), meaning that it also includes parity.

Geometric interpretation of the octahedral group is a cube. The transformations that form the

Figure 2: Geometric interpretation of Oh symmetry; the cube

octahedral group leave the cube invariant under them.

The octahedral group consists of the following transformations:

• identity E [does nothing],

• 8 threefold rotations [a rotation for 2π/3 about some axis; for example the (1,1,1) axis],

• 3 fourfold rotations repeated twice [rotation for π/2 twice; for example the (0,0,1) axis],

• 6 twofold rotations [rotations for π; for example the (0,0,1) axis],

• 6 fourfold rotations [rotations for π/2; for example the (0,0,1) axis],

• inversion [~r → −~r],

• 6 fourfold improper rotations [a fourfold rotation followed by reflection through the principal axis
of the rotation],

• 8 sixfold improper rotations [a sixfold rotation followed by a reflection through the principal axis
of rotation; for example the (1,1,1) axis],

• 3 reflections through a horizontal plane,

• 6 reflections through a diagonal plane.

From above we can see, that Oh has 48 elements divided into 10 classes. It has 10 irreducible repre-
sentations, that can be divided into 5 irreducible representations for each parity. They are denoted as:

5



A±1 , A
±
2 , E

±, T±1 , T
±
2 and are 1, 1, 2, 3, 3 dimensional respectively.

We will again be interested in the implications of these on the wave function basis, however they
are straight forward to workout from above definitions.

The characters of these transformations in the 10 irreducible representations are given in the char-
acter table [2], Table 1.

E 8 C3 6 C2 6 C4 3 C2
4 I 6 S4 8 S6 3 σh 6 σd

A+
1 1 1 1 1 1 1 1 1 1 1

A+
2 1 1 -1 -1 1 1 -1 1 1 -1

E+ 2 -1 0 0 2 2 0 -1 2 0
T+
1 3 0 -1 1 -1 3 1 0 -1 -1
T+
2 3 0 1 -1 -1 3 -1 0 -1 1
A−1 1 1 1 1 1 -1 -1 -1 -1 -1
A−2 1 1 -1 -1 1 -1 1 -1 -1 1
E− 2 -1 0 0 2 -2 0 1 -2 0
T−1 3 0 -1 1 -1 -3 -1 0 1 1
T−2 3 0 1 -1 -1 -3 1 0 1 -1

Table 1: Oh character table.

3.3 C4v

The ditetragonal pyramidal point group is the point group, obtained by adding reflection symmetry to
the point group C4. The latter is a small and simple group. It has one principal axis and is abelian.
However C4v also has reflection symmetry, which renders it nonabelian. The C4v is the symmetry
group of transformations that leave the the block element unchanged, however not quite; this block is
such, that the upper half is painted gray and the lower half is painted white. This object then has the
C4v symmetry. C4v is both a subgroup of O(3) and Oh.

Geometric interpretation is a block, that has different coloring in the upper half than in the lower
half.

Figure 3: Geometric interpretation of C4v symmetry; colored block.

The ditetragonal pyramidal group consits of the following transformations:

• identity [does nothing]
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• 2 fourfold rotations [rotation for π/2; for example around the (0,0,1) axis]

• 1 twofold rotation [rotation for π; for example around the (0,0,1) axis]

• 2 vertical reflections [reflection through the plane defined by a vector; for example (1,0,0) vector]

• 2 diagonal reflections [for example (1,1,0) vector]

From above it can be seen, that the C4v point group has 8 elements that are divided into 5 classes,
It has 5 irreducible representations, however in contrast to Oh, where they were labeled with respect
to parity, the C4v point group no longer has inversion symmetry; this is a consequence of coloring. The
irreducible representations are A1, A2, B1, B2, E, that are 1, 1, 1, 1 and 2 dimensional respectively.

The characters of these transformations in the 5 irreducible representations are given in the char-
acter table, Table 2:

E 2 C4 C2 2 σv 2 σd
A1 1 1 1 1 1
A2 1 1 1 -1 -1
B1 1 -1 1 1 -1
B2 1 -1 1 -1 1
E 2 0 -2 0 0

Table 2: C4v character table

4 General procedure

A general procedure to obtain physically relevant fields which will transform irreducibly with respect
to the symmetry of the finite box they are in. This consists of first obtaining the decomposition of the
full symmetry to the symmetry of the box. Some information on physics can already be obtained from
here. However for full significance a specific formula of projection operators can be used to obtain the
basis vectors or actually the correct linear combinations of the relevant fields, that then allows proper
determination of states.

To see how the the full symmetry decomposes under the smaller symmetry, characters for irreducible
representations of the full and the smaller symmetry need to be known. For clarity A will be denoted as
the full symmetry, while B will be denoted as the small symmetry. The "size" is classified with respect
to number of elements in the group, g. The representations, that transform as irreducible under the
symmetry A, transform as reducible under the transformations of B. The decomposition of A in B is
then defined by [3]:

mB,i =
1

g

∑
R

χA(R)χB,i(R), (20)

where mB is the number, that denotes how many times does a irreducible representation of B appear
in the given representation of A; specifically the representation of A, that transforms as irreducible
under A.

The result of such a decomposition is given as a direct sum of representations. Let ΓA denote a
representation of A and ΓBi as the i− th irreducible representation of B. Note that ΓA can transform
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as irreducible under the transformations of the group A and as reducible under the transformations of
group B. Then the decomposition is:

ΓA = mB,1Γ
B
1 ⊕mB,2Γ

B
2 ⊕ ... (21)

The sum goes over all the irreducible representations of group B.

Remember that in O(3), the representation is labeled by l, which is what is physically called an-
gular momentum. From the decomposition of A= O(3) and B= Oh we can determine which angular
momenta will be excited with fields, that are in a given irreducible representation of B. Physically
this means fields with specific combinations of momenta. This is of crucial importance to be able to
determine the physical states.

However to be able to determine the precise field combinations of the fields, that will excite specific
angular momenta, projection operators need to be deployed. Projection operators are usually defined
as:

PBi =
sB
g

∑
R

TBii (R)TA(R), (22)

where sB is dimensionality of the irreducible representation B, R are the elements of the group B,
TBii (R) are diagonal elements of the irreducible representation and TA(R) are the elements of the
group B in some reducible representation.
This projection operator projects the transformations in A, that are reducible in B to some eigenvectors
of irreducible representations of B. However this projection operator is not what is most useful, as
TAii (R) for each i and R are needed. This is less than advantageous, so therefore an alternative
projection operator can be defined. It is not formally denoted as a projection operator, however for
the duration of this seminar it will be named projection operator. The new projection operator will
be a sum over all i. This means, that the projection operator becomes:

PB =
sB
g

∑
R

χB(R)TA(R). (23)

The result of this is a matrix, which has some eigenvectors; these are the sums of the eigenvectors of a
given irreducible representation B. In order to obtain true eigenvectors, a Gramm-Schmidt procedure
is required to obtain an orthonormal basis of a the irreducible representation B. Many times it hap-
pens, that this matrix is block diagonal with already orthogonal eigenvectors, which means that the
Gramm-Schmidt procedure can be skipped.

With the given projection operator, field combinations that couple only to specific[up to some ex-
tent] angular momenta can be created; excited states can therefore be recognized and determined.

5 Decomposition of O(3) in Oh

To determine the decomposition, Equation (20) requires the characters of both groups, the continuous
group O(3) and the point group Oh. The characters of the group Oh are explicitly provided in Table
1, while for the O(3) group only a prescription how to obtain them was given. In order to do to the
decomposition, the relevant characters need to be obtained. That is the characters of the following
transformations under O(3)2:

2The reflections can be expressed as σ = IC2, first do a twofold rotation and then do the inverse; or the other way
around – they commute.
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• identity: χl=0(0) = 1, χl=1(0) = 3

• threefold rotation: χl=0(2π/3) = 1, χl=1(2π/3) = 0

• twofold rotation: χl=0(π) = 1, χl=1(π) = −1

• fourfold rotation: χl=0(π/2) = 1, χl=1(π/2) = 1

• twofold rotation: χl=0(π) = 1, χl=1(π) = −1

• inversion: χl=0 = 1, χl=1 = −3

• improper fourfold rotation: χl=0 = 1, χl=1 = −1

• improper sixfold rotation: χl=0 = 1, χl=1 = 0

• horizontal reflection: χl=0 = 1, χl=1 = 1

• diagonal reflection: χl=0 = 1, χl=1 = 1

Higher l are not presented, however could be calculated by given prescription. Thus the decompositions
are quite simple:

l = 0→ A+
1 , (24)

l = 1→ T−1 . (25)

However a different presentation of this will be more enlightening:

A+
1 → l = 0, 4, ... (26)

T−1 → l = 1, 3, ... (27)

Here it can be seen, that not all plane waves are present in a specific representation [the decomposition
provided here is a bit larger for clarity]. Indeed the A+

1 irreducible representation mixes only l = 0
and l = 4 waves. The T−1 mixes l = 1, 3 waves.

5.1 Projection operators and final fields

An example of the above decomposition follows. Fields with O(3) symmetry from Section 2 with gen-
eral momenta, will get limited momenta, such that they no longer have O(3) symmetry. From these
a reducible basis will be written and then the use of projection operators demonstrated on a specific
representation, to obtain eigenvectors of this specific irreducible representation.

Among the possible fields that present meson meson scattering the following is chosen:

ψ = M(~p)M
′
(−~p) = f3. (28)

Due to the fact, that there are no boundary conditions on ~p, this field has O(3) symmetry. However
when this field is put in a finite box with periodic boundary conditions, then ~p is no longer a continuous
variable, but a discrete one. It can only have values:

~p =
2π

L
~n, ~n ∈ Z3. (29)
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The simplest and smallest momenta ~n can take are:

~n1 = (1, 0, 0), ~n2 = (−1, 0, 0), (30)
~n3 = (0, 1, 0), ~n4 = (0,−1, 0), (31)
~n5 = (0, 0, 1), ~n6 = (0, 0,−1). (32)

Then the meson fields are:

ψ1 = M(~n1)M(−~n1), (33)
ψ2 = M(~n2)M(−~n2), (34)
ψ3 = M(~n3)M(−~n3), (35)
ψ4 = M(~n4)M(−~n4), (36)
ψ5 = M(~n5)M(−~n5), (37)
ψ6 = M(~n6)M(−~n6), (38)

(39)

We will take these to span our space. Obviously in continuous space the plane wave expansion is an
infinite series. Even in the case of discrete momenta this somewhat holds, as noted before, now certain
representations mix only certain l waves. What is actually most important in lattice simulations, to
have as little plane waves in a representation as possible. This happens, if irreducible representations
of the finite box are employed.

The fields now have a basis, however it is in a reducible form. In order to get correct combinations,
that lead to irreducible representations, the use of projection operators is needed. To obtain projection
operators, the transformations of the fields with the above basis is needed. In order to get those, the
specific transformations of the Oh group need to be written down. Their actions will be described,
however as that is clear, their actions on ~ni need not be written down explicitly.

• identity - no explanation necessary

• C+
4 (x, y, z) : rotation for π/2 about x, y, z axes respectively

• C−4 (x, y, z) : rotation for −π/2 about x, y, z axes respectively

• C2(x, y, z) : rotation for π about x, y, z axes respectively

• C2((x± y)) : rotation for π about x± y axes

• C2((x± z)) : rotation for π about x± z axes

• C2((y ± z)) : rotation for π about y ± z axes

• C1,2
3 (x± y + z) : rotation once or twice for 2π/3 about x± y + z axes

• C1,2
3 (−x− y + z) : rotation once or twice for 2π/3 about −x− y + z axes

• C1,2
3 (x− y − z) : rotation once or twice for 2π/3 about x− y − z axes

• inversion: ~r → −~r

• IC+
4 (x, y, z) : improper rotation for π/2 about x, y, z axes respectively

• IC−4 (x, y, z) : improper rotation for −π/2 about x, y, z axes respectively
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• IC2(x, y, z) : reflection through x, y, z defining planes respectively

• IC2((x± y)) : reflection through plane defined by x± y axes

• IC2((x± z)) : reflection through plane defined by x± z axes

• IC2((y ± z)) : reflection through plane defined by y ± y axes

• IC1,2
3 (x± y + z) : improper rotation once or twice for 2π/3 about x± y + z axes

• IC1,2
3 (−x− y + z) : improper rotation once or twice for 2π/3 about −x− y + z axes

• IC1,2
3 (x− y − z) : improper rotation once or twice for 2π/3 about x− y − z axes

These transformations have the usual definition in the coordinate vector space, however they also
have a representation in the basis of the field vectors defined above: [This is a bit ridiculous to write
explicitly; however those needed to calculate the projection operator are...]

Id =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C2(x) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

C2(y) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 ,

C2(z) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C+
4 (x) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0

C+
4 (y) =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0



C+
4 (z) =



0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C−4 (x) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0

C−4 (y) =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0



C−4 (z) =



0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

C2(x+y) =



0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

C2(x−y) =



0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0



C2(x+z) =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

C2(x−z) =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

C2(y+z) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0


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C2(y + z) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 Inv =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 IC2(x) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1



IC2(y) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 IC2(z) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 IC+
4 (x) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0

]

IC+
4 (y) =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

 IC+
4 (z) =



0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 IC−4 (x) =



0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0



IC−4 (y) =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 IC−4 (z) =



0 0 0 1 0 0
0 0 1 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

 IC2(x+y) =



0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1



IC2(x−y) =



0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 IC2(x+z) =



0 0 0 0 0 1
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0

 IC2(x−z) =



0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0



IC2(y + z) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0

 IC2(y − z) =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0


And the projection operator obtained by Equation 23 is:

P T
−
1 =



1 −1 0 0 0 0
−1 1 0 0 0 0
0 0 1 −1 0 0
0 0 −1 1 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1

 ,
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and it can be immediately seen, that the representation is reducible and that there are 3 linearly
independent eigenvectors, namely (1,−1, 0, 0, 0, 0), (0, 0, 1,−1, 0), (0, 0, 0, 0, 1,−1). This means, that
the field combinations, that belong to the vector will transform irreducibly under the group Oh:

ψ
T−1
x = M1(~x)M2(−~x)−M1(−~x)M2(~x), (40)

ψ
T−1
y = M1(~y)M2(−~y)−M1(−~y)M2(~y), (41)

ψ
T−1
z = M1(~z)M2(−~z)−M1(−~z)M2(~z). (42)

6 Decomposition of T−1 of Oh in C4v

For representation purposes, the decomposition of the T−1 of Oh in C4v can be done. This means,
that we take the operations that belong both to Oh and C4v and multiply their characters in the
sense of Section 4. Such a decomposition will not give full information on which plane waves are
present in a given irreducible representation, however in this special case it will give l = 1 partial wave
decomposition in C4v; this is due to the fact, that l = 1 partial wave was only in the T−1 irreducible
representation:

T−1 (Oh) = A1(C4v)⊕ E(C4v). (43)

Generally the entire series would need to be decomposed and this would no longer be beneficial.

6.1 Basis of A1 irreducible representation

There is a way to obtain the basis of the irreducible representation of a subgroup of Oh by knowing the
transformations in Oh. Specifically the method goes somewhat like: for a given subgroup of Oh take
the transformations that belong to the subgroup, but are defined in the Oh irreducible representation.
The matrices of this representation that correspond to the subgroup form a subduced representation
[5], which is reducible. However there is a benefit; by taking this subduced representation, then sum
the matrices in a given class to obtain a new matrix. By finding the matrix that diagonalizes this sum,
the matrix that reduces the subduced representation has been found.

The basis for the irreducible basis in Oh is ψ1 − ψ2, ψ3 − ψ4, ψ5 − ψ6. We write the C±4 in this
irreducible basis:

C+
4 (ψ1 − ψ2) = ψ3 − ψ4, (44)

C+
4 (ψ3 − ψ4) = −(ψ1 − ψ2), (45)

C+
4 (ψ5 − ψ6) = ψ5 − ψ6, (46)

C−4 (ψ1 − ψ2) = −(ψ3 − ψ4), (47)
C−4 (ψ3 − ψ4) = ψ1 − ψ2, (48)
C−4 (ψ5 − ψ6) = ψ5 − ψ6, (49)

which can be written in matrix form:

C+
4 =

 0 −1 0
1 0 0
0 0 1

 , C−4 =

 0 1 0
−1 0 0
0 0 1

 .
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The sum is obviously:

C+
4 + C−4 =

 0 0 0
0 0 0
0 0 1


This matrix is diagonalized trivialy. From this follow, that after aplying the matrix, that diago-

nalizes it, to the the basis we obtain a irreducible representation of the group C4v. The basis vector
ψ5 − ψ6 transforms as the A1 irreducible representation of C4v:

A1 : ψA1 = M1(~z)M2(−~z)−M1(−~z)M2(~z) (50)

7 Conclusion

The seminar describes how the symmetries of a finite box affect partial waves present in fields that
are used in lattice QCD simulations. The general procedure of obtaining fields, that will couple only
to minimal amount of partial waves is presented and a complete example made. Fields obtained from
this procedures can be used effectively to determine which states occur at which energy. In fact this
procedure is crucial to reliably determine a state when doing hadron spectroscopy from lattice QCD.
It is worth noting, that although the above procedure was done for the case of two meson fields, it
holds also for baryon fields, however there the double cover of Oh needs to be considered and this
introduces some technical difficulties; Oh is already a big group, however its double cover is still larger.
The seminar also demonstrates how once a irreducible basis in a larger group is already obtained how
to determine some parts of a basis for a smaller group as a freebie.
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