Konstrukcija hibridnih orbital s projekcijskimi operatorji iz simetrijsko pogojenih linearnih kombinacij atomskih orbital

Seminar pri predmetu Simetrije na podiplomskem študiju fizike

Mojca Miklavec Mentor: doc. dr. Primož Ziherl

Ljubljana, 8. december 2010

Kazalo

	Kazalo	1
	Povzetek	3
1	Atomske Orbitale	4
1.1	Oblika atomskih orbital	4
1.2	Simetrijske lastnosti atomskih orbital	6
2	Kovalentna kemijska vez	7
3	Hibridne orbitale	9
3.1	Hibridne orbitale z vezmi σ $\dots \dots \dots$	10
	<i>sp</i> - linearna hibridizacija	10
	sp^2 – trikotna hibridizacija	10
	sp^3 – tetraedrična hibridizacija	11
	sp^3d - trigonalno bipiramidalna hibridizacija	11
	sp^3d^2 – oktaedrična hibridizacija	11
3.2	Matematična oblika hibridnih orbital	12
	<i>sp</i> - linearna hibridizacija	13
	sp^2 – trikotna hibridizacija	14
	Baza upodobitve	14
	Tabela transformacij	14
	Razcep na nerazcepne upodobitve	14
	Določitev primernih orbital	15
	Uporaba projekcijskega operatorja	16
	Zveza med atomskimi orbitalami in dobljenimi projekcijami	17
	Izračun koeficientov	18
	Rezultat	19
	sp^3 – tetraedrična hibridizacija \dots	21
	Baza upodobitve	21
	Tabela transformacij	21
	Razcep na nerazcepne upodobitve	23
	Določitev primernih orbital	23
	Uporaba projekcijskega operatorja	23
	Zveza med atomskimi orbitalami in dobljenimi projekcijami	24
	Izračun koeficientov	24
	Rezultat	25
	sp^3d - trigonalno bipiramidalna hibridizacija \ldots	26
	Baza upodobitve	26
	Tabela transformacij	26
	Razcep na nerazcepne upodobitve	27

	Določitev primernih orbital	27
	Uporaba projekcijskega operatorja	27
	Zveza med atomskimi orbitalami in dobljenimi projekcijami	28
	Rezultat	29
	<i>sp³d</i> ² - oktaedrična hibridizacija	30
	Baza upodobitve	30
	Karakter transformacij	30
	Razcep na nerazcepne upodobitve	31
	Določitev primernih orbital	31
	Uporaba projekcijskega operatorja	32
	Zveza med atomskimi orbitalami in dobljenimi projekcijami	32
	Rezultat	33
3.3	Hibridne orbitale z vezmi π	34
	Primer trikotne molekule	34
	Baza upodobitve	34
	Tabela transformacij	35
	Razcep na nerazcepne upodobitve	35
	Določitev primernih orbital	35
	Primer oktaedrične molekule	36
	Baza upodobitve	36
	Razcep upodobitve	36
	Določitev primernih orbital	37
	Zaključek	38
	Literatura	39
	Priloge	40

Povzetek

V seminarju si bomo ogledali, kako simetrija pomaga pri obravnavi kemijskih vezi, natančneje hibridnih orbital – matematičnega modela, ki pomaga razumeti strukturo molekul.

V prvem poglavju so predstavljene atomske orbitale, njihova oblika in simetrijske lastnosti, v drugem kovalentne vezi in nekaj splošnega o njihovi obliki, v tretjem pa so obravnavane hibridne orbitale. Najprej se dotaknemo splošne oblike, navedemo primere petih najpogostejših hibridizacij z enojnimi vezmi in v jedru seminarja izpeljemo celoten postopek, s katerim izračunamo matematično obliko hibridnih orbital in jih tudi narišemo. Na grobo je orisan tudi postopek računa hibridnih orbital z vezmi π za dve različni geometriji molekul.

1. Atomske Orbitale

1.1. Oblika atomskih orbital

Atomske orbitale so lastne rešitve Schrödingerjeve enačbe, s katerimi opisujemo gibanje elektronov v atomu oziroma verjetnost, da se elektron nahaja v določenem delu prostora okrog atomskega jedra.

Za vodikov atom so lastne rešitve funkcije ψ_{nlm} , ki jih lahko v sferičnih koordinatah (r, ϑ, φ) izrazimo kot produkt radialnega in kotnega dela:

$$\psi_{nlm}(r,\vartheta,\varphi) = R_{nl}(r)Y_{lm}(\vartheta,\varphi) \tag{1}$$

in jih je mogoče zapisati tudi analitično. Katero koli valovno funkcijo pa lahko zapišemo kot vsoto

$$\Psi = \sum_{n=1}^{\infty} \sum_{l=0}^{n-1} \sum_{m=-l}^{l} c_{nlm} \psi_{nlm}.$$
 (2)

Glavno kvantno število n označuje lupino, stransko kvantno število l določa obliko orbitale, magnetno kvantno število m pa njeno orientacijo. Prvih nekaj orbital je naštetih v tabeli 1.

n	l			т		
		-2	-1	0	1	2
1	0			1 <i>s</i>		
2	0			2 <i>s</i>		
2	1		$2p_x$	$2p_z$	$2p_y$	
3	0			3 <i>s</i>		
3	1		$3p_x$	$3p_z$	$3p_y$	
3	2	$3d_{xy}$	$3d_{xz}$	$3d_{z^2}$	$3d_{yz}$	$3d_{x^2-y^2}$

Tabela 1Kvantna števila in atomske orbitale.

Pri ostalih atomih valovnih funkcij ne moremo več zapisati analitično, vendar so zgornjim kvalitativno podobne. V nadaljevanju nas tudi ne bo zanimala radialna odvisnost, temveč le kotni del $Y_{lm}(\vartheta, \varphi)$, kot je prikazan na sliki 1 in izračunan v tabeli 2 (kjer smo zaradi jasnosti in nadaljnje obravnave funkcijo Y_{lm} zapisali v kartezičnih koordinatah) [1].

l	m_l	orb.	Y_{lm}
0	0	S	$\frac{1}{2}\sqrt{\frac{1}{\pi}}$
1	0	p_z	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{z}{r}$
1	± 1	p_x	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{x}{r}$
		p_y	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{y}{r}$
2	0	d_{z^2}	$\frac{1}{4}\sqrt{\frac{5}{\pi}}\frac{3z^2-r^2}{r^2}$
2	± 1	d_{xz}	$\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xz}{r^2}$
		d_{yz}	$\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{yz}{r^2}$
2	± 2	d_{xy}	$\frac{1}{2}\sqrt{\frac{15}{\pi}}\frac{xy}{r^2}$
		$d_{x^2-y^2}$	$\frac{1}{4}\sqrt{\frac{15}{\pi}}\frac{x^2-y^2}{r^2}$

Tabela 2Kotni del valovnih funkcij, izražen s kartezičnimi koordinatami.

Slika 1 Vodikove orbitale s, p in d.

1.2. Simetrijske lastnosti atomskih orbital

Orbitale *s* so krogelno simetrične, zato jih katera koli simetrijska operacija iz točkovne grupe preslika same vase. Karakter poljubne simetrijske operacije je zato kar enak 1.

Orbitale p_x , p_y in p_z se pri teh simetrijskih operacijah obnašajo enako kot funkcije x, y in z, kar je razvidno že iz tabele 2. Rotaciji $C_2(z)$ in $C_2(y)$, inverzija ali zrcaljenje σ_{yz} bodo na primer orbitalo p_x preslikali v $-p_x$ (čemur pripišemo karakter -1), rotacija $C_2(x)$, zrcaljenji σ_{xy} ali σ_{xz} pa jo pustili nedotaknjeno (karakter 1). Rotacija $C_n(z)$ za n > 2 orbitalo p_x preslika v linearno kombinacijo p_x in p_y , kar povzroči degeneracijo in čemur pripišemo karakter $\cos(2\pi/n)$.

Podobno velja za orbitale *d*, ki se transformirajo po isti upodobitvi kot funkcije v indeksu in so za razliko od orbital *p* invariante na inverzijo skozi izhodišče koordinatnega sistema. Orbitala d_{xy} (glej sliko 1) se transformira enako kot funkcija xy: pri inverziji, rotacijah $C_2(x)$, $C_2(y)$, $C_2(z)$ in zrcaljenjih σ_{xy} , σ_{yz} , σ_{zx} se ne spremeni (karakter 1). Pri rotaciji $C_4(z)$ ali zrcaljenju preko ravnine $x = \pm y$ pa spremeni predznak (karakter -1).

Karakter simetrijskih operacij pri delovanju na posamezno orbitalo navadno lahko preberemo iz tabel karakterjev, ki jih najdemo v skoraj vsakem učbeniku o simetrijah. V zadnjih – običajno dveh – stolpcih lahko preberemo, kateri homogeni polinomi stopnje n (navadno za n = 1 in 2) ustrezajo posamezni upodobitvi. Primer je v tabeli 4. Orbitala s vedno ustreza prvi nerazcepni upodobitvi, orbitale p najdemo v predzadnji vrstici in ustrezajo polinomom prve stopnje, orbitale d pa v zadnji in ustrezajo polinomom druge stopnje. Včasih so navedeni tudi polinomi tretje stopnje, ki ustrezajo orbitalam f. Nekatere funkcije, kot npr. $x^2 + y^2$ ali $x^2 + y^2 + z^2$ se sicer transformirajo po dani nerazcepni upodobitvi, a ne ustrezajo nobeni orbitali.

Na spletni strani http://symmetry.jacobs-university.de/ najdemo tabele karakterjev skupaj s polinomi tretje stopnje.

2. Kovalentna kemijska vez

Če si pobliže ogledamo sosednja atoma v neki molekuli s kovalentnimi vezmi, opazimo, da je za elektrone energijsko najugodneje, če se nahajajo na sredini med obema jedroma, saj je ob tem elektrostični privlak med elektronom in jedroma največji, pozitivno nabiti jedri pa zaradi senčenja elektronov čutita manjši odboj.

Verjetnostno gostoto elektronov v molekuli sicer v splošnem opišemo z dokaj kompleksno valovno funkcijo, vendar si je takrat, ko ne potrebujemo numeričnih rezultatov, nadvse priročno molekule predstavljati kot skupek atomov, povezanih s kemijsko vezjo, kjer kemijska vez pomeni zgolj povečano elektronsko gostoto med sosednjima atomoma.

V najbolj poenostavljeni obliki govorimo o enojnih, dvojnih in trojnih vezeh med atomi v molekuli, pri čemer enojni vezi pravimo tudi vez σ , dvojna (oziroma trojna) vez pa je sestavljena iz ene vezi σ in ene (oziroma dveh) vezi π . Pri tvorbi vezi navadno sodelujeta dva elektrona z nasprotnima spinoma [2].

Imena za vezi σ , π , δ , φ in γ izhajajo iz poimenovanja atomskih orbital s, p, d, f in g. Najmočnejše so vezi σ , ki so simetrične glede na rotacijo okrog osi med atomoma. Valovna funkcija, s katero jih opišemo, je brez vozelnih ravnin (ang. *nodal plane*). Nastanejo z neposrednim prekrivanjem orbital sosednjih atomov, ki morajo biti prav tako simetrične glede na omenjeno os vrtenja (npr. med orbitalama s - s, $s - p_z$, $p_z - p_z$, $p_z - d_{z^2}$, ...).

Slika 2 Vez σ med ogljikoma v molekuli etena (levo), ki je nastala iz prekrivanja orbital $p_z - p_z$ in je simetrična na rotacijo okrog vezi. Vez σ na desni je nastala iz prekrivanja orbital $d_{z^2} - d_{z^2}$. Vir: [7] in [8].

Vezi π imajo eno vozelno ravnino in posledično niso več simetrične na rotacijo. Nastanejo s posrednim prekrivanjem vzporednih orbital sosednjih atomov (npr. med orbitalama $p_x - p_x$, $p_y - p_y$, ...). Med sosednjima atomoma lahko nastaneta največ dve vezi π z medsebojno pravokotnima vozelnima ravninama.

Slika 3 Vez π , sestavljena iz dveh orbital p (levo) in dveh orbital d (desno). Vir: [9] in [10].

Vezi $\delta(\varphi, \gamma)$ imajo dve (štiri, osem) vozelnih ravnin, ustrezajo prekrivanju atomskih orbital d(f, g) in so še šibkejše od vezi π . Najdemo jih predvsem pri koordinacijskih spojinah in jih ne bomo posebej obravnavali.

Slika 4 Vez δ v molekuli MO₂. Vir: [11].

Slika 5 Vezna in nevezna molekulska orbitala φ . Vir: [12].

3. Hibridne orbitale

V najbolj splošnem primeru za opis molekul uporabljamo molekulske orbitale, v zelo grobem približku pa molekule opišemo s kovalentimi kemijskimi vezmi in uporabimo teorijo valenčne vezi.

Teorija valenčne vezi pravi, da atomi stremijo po tem, da bi imeli zapolnjeno zunanjo lupino. Npr. vodik z enim zunanjim elektronom potrebuje en dodaten elektron, kisik s šestimi pa dva do zapolnjene lupine. Kisik v molekuli vode si tako z vsakim vodikom »deli« po en elektron v skupnem elektronskem paru. Žal pa ta teorija ne zna razložiti niti obstoja molekule BH₃ niti SF₆. V prvem primeru bi imel bor zgolj šest elektronov, žveplo v drugem pa dvanajst. Prav tako teorija ne ve povedati mnogo o sami geometriji molekule.

Po drugi strani lahko kemijsko vez opišemo kot prekrivanje atomskih orbital sosednjih atomov. Vendar je tudi ta opis zelo omejen. Za opis vode bi lahko npr. predpostavili, da se orbitali *s* obeh vodikovih atomov prekrivata z orbitalama p_x in p_y kisikovega atoma. Vendar v tem primeru dobimo kot med obema vezema enak 90°, kar ne ustreza dejanski vrednosti 104,5°. Molekule metana s štirimi atomi vodika okrog ogljika ne moremo opisati, saj nimamo na voljo dovolj ogljikovih orbital [3].

Zato so v kemiji vpeljali koncept *hibridnih orbital*, pri katerem s kombiniranjem zunanjih atomskih orbital centralnega atoma v molekuli AB_n dobimo n enakovrednih hibridnih orbital, ki kažejo v smereh sosednjih atomov in se prekrivajo z atomskimi (lahko tudi s hibridnimi) orbitalami sosednjih atomov [4].

Hibridne orbitale ϕ_i sestavljamo iz linearnih kombinacij posameznih atomskih orbital ψ_p centralnega atoma:

$$\phi_i = \sum_p c_{pi} \psi_p, \tag{3}$$

pri čemer si bomo v poglavju 3.2 ogledali, kako zgolj s pomočjo upoštevanja simetrije določimo koeficiente c_{pi} . (Indeks p teče po atomskih orbitalah 1s, 2s, 2 p_x , ...)

Hibridne orbitale torej stanje v molekuli opišejo natančneje od atomskih orbital in manj natančno od molekulskih orbital. Sama hibridizacija ni realen fizikalen proces, temveč zgolj model, ki pomaga razložiti strukturo molekule, ko enostavnejši model odpove.

3.1. Hibridne orbitale z vezmi σ

Najpogosteje srečamo pet tipov hibridizacij, ki so prikazani na spodnjih skicah: linearno (sp), trikotno (sp^2) , tetraedrično (sp^3) , trigonalno bipiramidalno (sp^3d) in oktaedrično (sp^3d^2) .

Pri n hibridnih orbitalah imamo v vsaki od n smeri bodisi kemijsko vez, na katero je »pripet« sosednji atom, bodisi nevezni elektronski par. Nevezni elektronski pari zavzamejo več prostora in nekoliko popačijo geometrijo molekule ter ji znižajo simetrijo, vendar teh primerov ne bomo posebej obravnavali.

Na spodnjih slikah so predstavljene hibridizacije, postavitev atomov oziroma prostih elektronskih parov, oblika molekule z besedo, simetrijska grupa in primer take molekule.

sp – linearna hibridizacija

*sp*² – trikotna hibridizacija

trikotna	upognjena
D_{3h}	C_{2v}
BH_3 , BF_3	CH ₂

*sp*³ – tetraedrična hibridizacija

109.5°			
		trikotno	
	tetraedrična	piramidalna	upognjena
	T_d	C_{3v}	C_{2v}
	CH_4	NH_3	H ₂ O

sp^3d – trigonalno bipiramidalna hibridizacija

90°	
ž 🗨	
120°	

trikotno	gugalnica/	v obliki	
bipiramidalna	metulj	črke T	linearna
D_{3h}	C_{2v}	C_{2v}	D_{3h}
PF ₅	SF ₄	BrF ₃	XeF ₂

sp^3d^2 – oktaedrična hibridizacija

	kvadratno	kvadratno
oktaedrična	piramidalna	planarna
O_h	C_{4v}	D_{4h}
SF ₆	ClF ₅	XeF ₄

3.2. Matematična oblika hibridnih orbital

Za določitev koeficientov v enačbi (3) pri mešanju atomskih orbital so potrebni sledeči koraki [5]:

- 1. Določimo točkovno skupino molekule.
- 2. Določimo bazo upodobitve: vektor ϕ_i v smeri vsake kemijske vezi (oz. hibridne orbitale) σ ,
- 3. Za vsak bazni vektor ϕ_i in vse operacije G_a določimo, kam simetrijska operacija $T(G_a)$ preslika vektor.
- 4. Izračunamo karakterje $\chi(G_a)$ za operacije G_a v tej upodobitvi.
- 5. Upodobitev razcepimo na nerazcepne upodobitve $T^{(\alpha)}$:

$$\Gamma^{\text{hib}} = \sum_{\alpha}^{\oplus} m_{\alpha} \Gamma^{(\alpha)}, \qquad m_{\alpha} = \frac{1}{g} \sum_{p} c_{p} \chi_{p}^{(\alpha)} \chi_{p}^{\text{hib}}.$$
(4)

- 6. Za vsako dobljeno nerazcepno upodobitev $T^{(\alpha)}$:
 - a. Iz tabele karakterjev preberemo, katere orbitale ustrezajo tej upodobitvi.
 - b. Glede na elektronsko konfiguracijo centralnega atoma določimo, katere od simetrijsko ustreznih orbital imajo smisel.
 - c. Uporabimo projekcijski operator $P^{(\alpha)}$ na enem, dveh ali treh vektorjih ϕ_i (glede na to, ali je upodobitev $T^{(\alpha)}$ eno-, dvo- ali tridimenzionalna):

$$P^{(\alpha)}\phi_i = \frac{s_\alpha}{g} \sum_{a \in \mathcal{G}} \chi_a^{(\alpha)} T(G_a)\phi_i,$$
(5)

kjer je $P^{(\alpha)}$ projekcijski operator v upodobitvi $T^{(\alpha)}$, s_{α} dimenzija upodobitve, g število elementov grupe in $\chi_a^{(\alpha)}$ karakter operacije G_a v tej upodobitvi.

- č. Normaliziramo dobljene vektorje (zato bomo v vseh nadaljnjih računih izpuščali predfaktor s_{α}/g).
- d. Izračunamo, kako se posamezne atomske orbitale izražajo s hibridnimi.
- e. Iz inverzne oziroma transponirane matrike preberemo, kako se hibridne orbitale izražajo z atomskimi orbitalami.

sp – linearna hibridizacija

Linearna molekula pripada točkovni skupini $D_{\infty h}$. Za bazo vzamemo vektorje iz enačbe (9).

$$\longrightarrow z \qquad \phi_1 = (0, 0, 1), \qquad (9)$$

$$\phi_2 \leftarrow \bullet \rightarrow \phi_1 \qquad \phi_2 = (0, 0, -1).$$

V tem primeru bomo rezultat, ki je dovolj enostaven, zgolj zapisali:

$$\phi_1 = \frac{1}{\sqrt{2}}(s + p_z),$$
(10)
$$\phi_2 = \frac{1}{\sqrt{2}}(s - p_z).$$

Podroben postopek, kako do rezultata pridemo, si bomo ogledali pri ostalih hibridizacijah.

Slika 6 Hibridni orbitali berilija v molekuli BeH_2 iz orbital 2s in 2p.

V molekuli BeH₂ se vodikovi orbitali *s* prekrivata z enako predznačenim (pozitivnim oz. vijoličnim) delom hibridne orbitale berilijevega atoma.

*sp*² – trikotna hibridizacija

Baza upodobitve

Trikotna molekula pripada točkovni skupini D_{3h} . Za bazo vzamemo naslednje vektorje:

Tabela transformacij

Simetrijske operacije vektorje ϕ_i preslikajo tako, kot vidimo v tabeli 3. Karakter je enak številu vektorjev, ki se pri transformaciji ne spremenijo.

	Ε	20	- 3	3 <i>C</i> ₂		σ_h	2 <i>S</i> ₃		$3\sigma_v$			
$oldsymbol{\phi}_1$	ϕ_1	$oldsymbol{\phi}_2$	ϕ_3	ϕ_1	ϕ_3	$oldsymbol{\phi}_2$	ϕ_1	${oldsymbol{\phi}}_2$	ϕ_3	ϕ_1	${oldsymbol{\phi}}_3$	ϕ_2
${oldsymbol{\phi}}_2$	ϕ_2	ϕ_3	ϕ_1	ϕ_3	ϕ_2	ϕ_1	ϕ_2	ϕ_3	ϕ_1	ϕ_3	${oldsymbol{\phi}}_2$	ϕ_1
$oldsymbol{\phi}_3$	ϕ_3	$oldsymbol{\phi}_1$	ϕ_2	$oldsymbol{\phi}_2$	$oldsymbol{\phi}_1$	${oldsymbol{\phi}}_3$	$oldsymbol{\phi}_3$	$oldsymbol{\phi}_1$	$oldsymbol{\phi}_2$	$oldsymbol{\phi}_2$	$oldsymbol{\phi}_1$	ϕ_3
$\chi^{ m hib}$	3	()	1		3	()		1		

Tabela 3 V tabeli so uporabljene simetrijske operacije (*E*) (C_3, C_3^2) (C'_2, C''_2, C''_2) (σ_v) (S_3, S_3^2) ($\sigma'_v, \sigma''_v, \sigma'''_v$), kjer C_3 in S_3 rotirata za 120° v obratni smeri urinega kazalca, $C_2^{(i)}$ vrtijo okrog $\phi_i, \sigma_v^{(i)}$ pa slikajo čez vertikalno ravnino, ki gre skozi ϕ_i .

Razcep na nerazcepne upodobitve

Pri razcepu si bomo pomagali s tabelo karakterjev za grupo D_{3h} (tabela 4).

Za razcep uporabimo enačbi

D_{3h}	Ε	$2C_{3}$	$3C_2$	σ_h	$2S_{3}$	$3\sigma_v$		
A'_1	1	1	1	1	1	1		$x^2 + y^2$, z^2
A'_2	1	1	-1	1	1	-1	R_z	
<i>E'</i>	2	-1	0	2	-1	0	(x, y)	$(x^2 - y^2, xy)$
$A_1^{\prime\prime}$	1	1	1	-1	-1	-1		
$A_2^{\prime\prime}$	1	1	-1	-1	-1	1	Z	
E''	2	-1	0	-2	1	0	(R_x, R_y)	(xz, yz)

Tabela 4 Tabela karakterjev za D_{3h} . Vir: [6].

$$\Gamma^{\text{hib}} = \sum_{\alpha}^{\oplus} m_{\alpha} T^{(\alpha)}, \qquad (15)$$
$$m_{\alpha} = \frac{1}{g} \sum_{p} c_{p} \chi_{p}^{(\alpha)} {}^{*} \chi_{p}^{\text{hib}},$$

kjer je α indeks nerazcepne upodobitve $\Gamma^{(\alpha)}$ (za D_{3h} je $\alpha \in \{A'_1, A'_2, \dots, E''\}$), p indeks razreda simetrijskih operacij, c_p število elementov v njem, g število vseh elementov $g = \sum_p c_p$ in χ_p oz. $\chi_p^{(\alpha)}$ karakter operacije iz razreda p v upodobitvi Γ^{hib} oz. $\Gamma^{(\alpha)}$. Tako izračunamo:

$$\begin{split} m_{A_1'} &= \frac{1}{12} (1(1)(3) + 2(-1)(0) + 3(-1)(1) + 1(-1)(3) + 2(-1)(0) + 3(-1)(1)) = 1, \\ m_{A_2'} &= \frac{1}{12} (1(1)(3) + 2(-1)(0) - 3(-1)(1) + 1(-1)(3) + 2(-1)(0) + 3(-1)(1)) = 0, \\ m_{E'} &= \frac{1}{12} (1(2)(3) + 2(-1)(0) + 3(-0)(1) + 1(-2)(3) + 2(-1)(0) + 3(-0)(1)) = 1, \\ m_{A_1''} &= \frac{1}{12} (1(1)(3) + 2(-1)(0) + 3(-1)(1) + 1(-1)(3) + 2(-1)(0) + 3(-1)(1)) = 0, \\ m_{A_2''} &= \frac{1}{12} (1(1)(3) + 2(-1)(0) - 3(-1)(1) + 1(-1)(3) + 2(-1)(0) + 3(-1)(1)) = 0, \\ m_{E''} &= \frac{1}{12} (1(2)(3) + 2(-1)(0) + 3(-0)(1) + 1(-2)(3) + 2(-1)(0) + 3(-0)(1)) = (0.6) \end{split}$$

Od tod sledi, da je

$$\Gamma^{\text{hib}} = \Gamma^{A_1'} \oplus \Gamma^{E'}.$$
(17)

Določitev primernih orbital

Iz zadnjih dveh stolpcev tabele karakterjev za D_{3h} (tabela 4) preberemo, katere atomske orbitale so primerne za tvorbo hibridnih orbital:

upodobitev	$\Gamma^{A_1'}$	$\Gamma^{E'}$
orbitale s	S	
p		(p_x, p_y)
d	d_{z^2}	$(d_{x^2-y^2}, d_{xy})$

Tabela 5Atomske orbitale, primerne zatvorbo hibridnih orbital v trikotnih molekulah.

Dve orbitali med oklepaji pomenita, da orbitali skupaj tvorita dvodimenzionalno nerazcepno upodobitev. Od tod bi lahko sklepali na katero koli izmed naslednjih kombinacij orbital: sp^2 , sd^2 ali d^3 . V tem primeru moramo upoštevati še kemijske lastnosti elementa, katerega hibridne orbitale računamo. V primeru bora je energija orbital dprevisoka, da bi lahko sodelovale pri hibridizaciji, zato pride v poštev le hibridizacija iz orbital s, p_x in p_y .

Pri atomih višje v periodnem sistemu pa je mogoče »mešanje«: hibridne orbitale lahko zapišemo kot

$$\phi' = a\phi_{sp^2} + b\phi_{sd^2},\tag{18}$$

kjer koeficienta *a* in *b* dobimo iz kvantnomehanskih izračunov.

Uporaba projekcijskega operatorja

S pomočjo projekcijskega operatorja lahko iz enega (dveh ali treh) vektorjev dobimo novo linearno kombinacijo vektorjev, ki ustreza natanko izbrani nerazcepni upodobitvi.

Če začasno zanemarimo normalizacijo, se projekcijski operator zapiše kot

$$P^{(\alpha)}\phi_i = \sum_{G_a \in \mathcal{G}} \chi_a^{(\alpha)} T(G_a)\phi_i, \tag{19}$$

kjer je $P^{(\alpha)}$ projekcijski operator v upodobitvi $\Gamma^{(\alpha)}$ in $\chi_a^{(\alpha)}$ karakter operacije G_a v tej upodobitvi.

Če želimo projekcijski operator uporabiti na katerem koli baznem vektorju ϕ_i , tabelo 3 raje prepišemo v nekoliko bolj splošno obliko, kjer za vsako vrstico znotraj vsakega razreda seštejemo elemente. S simbolom *S* smo označili *S* = $\phi_1 + \phi_2 + \phi_3$.

	Ε	$2C_{3}$	$3C_{2}$	σ_h	<i>S</i> 2 ₃	$3\sigma_v$
ϕ_i	ϕ_i	$S - \phi_i$	S	ϕ_i	$S - \phi_i$	S

Tabela 6 Vsota elementov znotraj razreda za splošno vrstico *i* iz tabele 3.

Rezultat uporabe vseh šestih projekcijskih operatorjev P^{α} na vektorjih ϕ_i je prikazan v tabeli 7. Dobimo ga kot skalarni produkt vrstice iz tabele 6 in vrstice iz tabele karakterjev (tabela 4).

	Ε	$2C_3$	$3C_{2}$	σ_h	<i>S</i> ₃	σ_v	vsota
$P^{(A_1')}\phi_i$	$1\phi_i$	$1(S-\phi_i)$	1 <i>S</i>	$1\phi_i$	$1(S-\phi_i)$	1 <i>S</i>	4 <i>S</i>
$P^{(A_2')}\phi_i$	$1\phi_i$	$1(S-\phi_i)$	-1S	$1\phi_i$	$1(S-\phi_i)$	-1S	0
$P^{(E')}\phi_i$	$2\phi_i$	$-1(S-\phi_i)$	0 <i>S</i>	$2\phi_i$	$-1(S-\phi_i)$	0 <i>S</i>	$2(3\phi_i - S)$
$P^{(A_1'')}\phi_i$	$1\phi_i$	$1(S-\phi_i)$	1 <i>S</i>	$-1\phi_i$	$-1(S-\phi_i)$	-1S	0
$P^{(A_2'')}\phi_i$	$1\phi_i$	$1(S-\phi_i)$	-1S	$-1\phi_i$	$-1(S-\phi_i)$	1 <i>S</i>	0
$P^{(E')}\phi_i$	$2\phi_i$	$-1(S-\phi_i)$	0 <i>S</i>	$-2\phi_i$	$1(S-\phi_i)$	0 <i>S</i>	0

Tabela 7 Rezultat delovanja projekcijskega operatorja $P^{(\alpha)}$ na vektor ϕ_i .

Za neničelni projekciji je

$$P^{(A_{1}')}\phi_{i} = 4S \qquad \propto \frac{1}{\sqrt{3}}S \quad \text{in}$$

$$P^{(E')}\phi_{i} = 2(3\phi_{i} - S) \propto \frac{1}{\sqrt{6}}(3\phi_{i} - S),$$
(20)

za projekcijske operatorje v ostalih upodobitvah, ki niso del razcepa iz enačbe (17), pa je rezultat po pričakovanjih enak 0.

Zveza med atomskimi orbitalami in dobljenimi projekcijami

Za enodimenzionalno upodobitev A'_1 , ki ustreza simetriji orbitale *s*, je dovolj uporabiti projekcijski operator na enem samem vektorju $P^{(A'_1)}\phi_1 = 4S = 4(\phi_1 + \phi_2 + \phi_3)$ oziroma normalizirano obliko

$$s:=\psi_s=\frac{1}{\sqrt{3}}\left(\phi_1+\phi_2+\phi_3\right).$$
(21)

Atomske orbitale bomo krajše zapisovali kar s črkami s, p_x , p_y , ...

Za dvodimenzionalno upodobitev E' moramo uporabiti projekcijski operator na dveh vektorjih:

$$P^{(E')}\phi_1 = 2(2\phi_1 - \phi_2 - \phi_3) \propto \frac{1}{\sqrt{6}}(2\phi_1 - \phi_2 - \phi_3), \qquad (22)$$
$$P^{(E')}\phi_2 = 2(2\phi_2 - \phi_1 - \phi_3) \propto \frac{1}{\sqrt{6}}(2\phi_2 - \phi_1 - \phi_3).$$

Upodobitvi E' ustrezata orbitali p_x in p_y , rezultata sta zato linearni kombinaciji obeh orbital:

$$\frac{1}{\sqrt{6}} (2\phi_1 - \phi_2 - \phi_3) = a_1 p_x + b_1 p_y, \qquad a_1^2 + b_1^2 = 1,$$

$$\frac{1}{\sqrt{6}} (2\phi_2 - \phi_1 - \phi_3) = a_2 p_x + b_2 p_y, \qquad a_2^2 + b_2^2 = 1.$$
(23)

Izračun koeficientov

Koeficiente a_1 , a_2 , b_1 in b_2 določimo tako, da izberemo katerokoli simetrijsko operacijo, ki izraza $(2\phi_1 - \phi_2 - \phi_3)/\sqrt{6}$ oziroma $(2\phi_2 - \phi_1 - \phi_3)/\sqrt{6}$ ne spremeni, in opazujemo, kam se pri tem preslikata orbitali p_x in p_y .

Zrcaljenje preko ravnine x = 0 (σ'_v) pusti izraz $(2\phi_1 - \phi_2 - \phi_3)/\sqrt{6}$ nespremenjen, zato je:

$$T(\sigma'_{\nu})\left(\frac{1}{\sqrt{6}}\left(2\phi_{1}-\phi_{2}-\phi_{3}\right)\right) = \frac{1}{\sqrt{6}}\left(2\phi_{1}-\phi_{2}-\phi_{3}\right) \text{ oziroma}$$
(24)

$$T(\sigma_{\nu}')(a_1p_x + b_1p_{\nu}) = a_1p_x + b_1p_{\nu},$$
(25)

po drugi strani pa je

$$T(\sigma'_{v})(a_{1}p_{x} + b_{1}p_{y}) = a_{1}T(\sigma'_{v})p_{x} + b_{1}T(\sigma'_{v})p_{y} = -a_{1}p_{x} + b_{1}p_{y},$$
(26)

od koder sledi, da sta $a_1 = 0$ in $b_1 = 1$, oziroma je

$$p_{\mathcal{Y}} := \psi_{p_{\mathcal{Y}}} = \frac{1}{\sqrt{6}} \left(2\phi_1 - \phi_2 - \phi_3 \right).$$
(27)

Tudi rešitev $b_1 = -1$ ustreza enačbam (23), (25) in (26), vendar le $b_1 = 1$ ustreza začetnemu nastavku (14). Če predpostavimo, da je valovna funkcija p_y pozitivna pri y > 0 in ker imajo ϕ_1 , $-\phi_2$ in $-\phi_3$ vse pozitivno komponento y, je izbira $b_1 = 1$ ustreznejša.

Operator, ki ne spremeni izraza $(2\phi_2 - \phi_1 - \phi_3)/\sqrt{6}$, je zrcaljenje preko ravnine skozi drugi atom, σ_v'' . Orbitali p_x in p_y transformira kot

in velja

$$T(\sigma_{v}^{\prime\prime})\left(\frac{1}{\sqrt{6}}\left(2\phi_{2}-\phi_{1}-\phi_{3}\right)\right) = \frac{1}{\sqrt{6}}\left(2\phi_{2}-\phi_{1}-\phi_{3}\right) \text{ oziroma}$$
(32)

$$T(\sigma_{v}^{\prime\prime})(a_{2}p_{x}+b_{2}p_{y}) = a_{2}p_{x}+b_{2}p_{y}, \text{ istočasno pa še}$$

$$T(\sigma_{v}^{\prime\prime})(a_{2}p_{x}+b_{2}p_{y}) = a_{2}T(\sigma_{v}^{\prime\prime})p_{x}+b_{2}T(\sigma_{v}^{\prime\prime})p_{y} =$$

$$= \left(\frac{1}{2}a_{2}+\frac{\sqrt{3}}{2}b_{2}\right)p_{x}+\left(\frac{\sqrt{3}}{2}a_{2}-\frac{1}{2}b_{2}\right)p_{y} =$$

$$= -\frac{\sqrt{3}}{2}p_{x}-\frac{1}{2}p_{y}.$$
(33)

Torej

$$\frac{1}{\sqrt{6}} \left(2\phi_2 - \phi_1 - \phi_3 \right) = -\frac{\sqrt{3}}{2} p_x - \frac{1}{2\sqrt{6}} \left(2\phi_1 - \phi_2 - \phi_3 \right), \tag{34}$$

$$p_x := \psi_{p_x} = \frac{1}{\sqrt{2}} \left(\phi_3 - \phi_2 \right). \tag{35}$$

Enačbam bi ustrezala tudi $a_2 = \sqrt{3}/2$ in $b_2 = 1/2$, a zopet zaradi ujemanja predznakov z orbitalami izberemo negativni predznak.

Vse tri enačbe za orbitale zapišemo v matrični obliki

$$\begin{bmatrix} s \\ p_{x} \\ p_{y} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \phi_{3} \end{bmatrix}.$$
 (36)

Rešitev dobimo z inverzijo matrike (36), a ker je matrika ortogonalna, je njen inverz kar transponirana matrika:

$$\begin{bmatrix} \phi_1 \\ \phi_2 \\ \phi_3 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ 0 & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{2}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} \end{bmatrix}^{-1} \begin{bmatrix} s \\ p_x \\ p_y \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} s \\ p_x \\ p_y \end{bmatrix}.$$
(37)

Rezultat

Hibridne orbitale sp^2 se z atomskimi orbitalami torej izražajo kot:

$$\phi_{1} = \left(\frac{1}{\sqrt{3}}s + \frac{2}{\sqrt{6}}p_{y}\right),$$
(38)
$$\phi_{2} = \left(\frac{1}{\sqrt{3}}s - \frac{1}{\sqrt{2}}p_{x} - \frac{1}{\sqrt{6}}p_{y}\right) \text{ in }$$

$$\phi_{3} = \left(\frac{1}{\sqrt{3}}s + \frac{1}{\sqrt{2}}p_{x} - \frac{1}{\sqrt{6}}p_{y}\right).$$

ter so za borov trihidrid (iz atomskih orbital 2s in 2p) upodobljene na sliki 7.

*sp*³ – tetraedrična hibridizacija

Baza upodobitve

Tetraedrična molekula pripada simetrijski grupi T_d . Molekulo orientiramo tako, da lahko za bazo izberemo vektorje med središčem in štirimi nesosednjimi oglišči kocke (enačbe (42)), s čimer je najlaže računati.

Tabela transformacij

Vpliv štiriindvajsetih simetrijskih operacij na bazne vektorje in karakter posameznih operacij je predstavljen v tabeli 8.

	$ \phi_4 $	ϕ_2	$\frac{1}{2}\phi_3$	ϕ_1		
	Φ^{-}	Φ	Φ	ϕ^{i}		
ь	ϕ	ϕ_2	ϕ_1	ϕ_4	5	
9	ϕ_1	ϕ_4	ϕ_3	ϕ_2		
	ϕ_2	ϕ_1	ϕ_3	ϕ_4		
	ϕ_1	ϕ_2	ϕ_4	ϕ_3		
	ϕ^{3}	ϕ_4	ϕ_2	ϕ_1		و ر ج jer je
	ϕ_4	ϕ_3	ϕ_1	${oldsymbol{\phi}}_2$		racije v, C_{22} , v' , r_{23}
4	ϕ_2	ϕ_4	ϕ_1	ϕ_3		open c, C_{2j} $4, \sigma_2$ vrte
65	ϕ_3	ϕ_1	ϕ_4	ϕ_2	0	ijske (C_2)
	ϕ_4	ϕ_1	ϕ_2	ϕ_3		metri $_{3,3}^{(i)}$, $\sigma_{2}^{(i)}$, $C_{3}^{(i)}$, $C_{3}^{(i)}$
	ϕ_2	ϕ_3	ϕ_4	${oldsymbol{\phi}}_1$		ne sij 31, <i>C</i> 34, <i>O</i>
	ϕ_2	ϕ_1	ϕ_4	ϕ_3		abljen $^{\prime\prime 2}, C$ $^{\prime}_{12}, \sigma$ i za
$3C_2$	ϕ_4	ϕ_3	ϕ_2	ϕ_1	0	upora , $C_{z}^{(i)}$, $C_{z}^{(i)}$, $(o$ orja q
	ϕ	ϕ_4	ϕ_1	${oldsymbol{\Phi}_2}$		i so 1 , C_{3}^{2} , C_{4z}^{3} , S_{4z}^{3} , vekto
	ϕ_2	ϕ_{3}	ϕ_1	ϕ_4		tabel tabel tabel tabel tabel tabel tabel tabel tabel tabels C_{3}^{3} , C_{4}^{3} , S_{4y} , S_{100} trog
	ϕ^3	ϕ_1	ϕ_2	ϕ_4		5 V ² , ² , ² ³ , ² , ² ³ , ² , ³
	ϕ_4	ϕ_1	ϕ_3	ϕ_2		ela 8 C_3^2 , C_{34x}^2 , S_{4x}^3 , S_{4x}^3 , C_{74x}^3
	ϕ_2	ϕ_4	ϕ_3	ϕ_1		Tab (E) (E), (χ), $C_{3}^{(i)}$, $C_{3}^{(i)}$
80	ϕ^3	ϕ_2	ϕ_4	ϕ_1		(<i>S</i> ₄
	ϕ_4	ϕ_2	ϕ_1	ϕ_3		
	ϕ_1	ϕ_4	${\pmb \Phi}_2$	ϕ_3		
	ϕ_1	ϕ_{3}	ϕ_4	${\pmb \Phi}_2$		
E	ϕ_1	ϕ_2	${\boldsymbol \phi}_3$	ϕ_4	4	-
	ϕ_1	ϕ_2	ϕ_3	ϕ_4	$\chi^{ m hib}$	

 $^{240^{\circ}}$ okrog istega vektorja. Uperacija C_{2i} vrti okrog koordinatne osi i za kot 180°, operacije S_{4i} in S_{4i}^3 prav tako vrtijo z zrcaljenjem okrog osi i za kot 90 oziroma 270°, σ_{ij} pa zrcali čez ravnino, ki jo

napenjata vektorja ϕ_i in ϕ_j (skozi koordinatno izhodišče).

Razcep na nerazcepne upodobitve

T_d	E	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	$6\sigma_d$		
A_1	1	1	1	1	1		$x^2 + y^2 + z^2$
A_2	1	1	1	-1	-1		
Ε	2	-1	2	0	0		$(2z^2 - x^2 - y^2, x^2 - y^2)$
T_1	3	0	-1	1	1	(R_x, R_y, R_z)	
T_2	3	0	-1	-1	-1	(x, y, z)	(xy, xz, yz)

Tabela 9 Tabela karakterjev za *T*_d

Z uporabo tabele karakterjev za T_d (tabela 9) po enakem postopku razcepimo upodobitev v

$$\Gamma^{\text{hib}} = \Gamma^{A_1} \oplus \Gamma^{T_2}.$$
(43)

Določitev primernih orbital

Iz zadnjih dveh stolpcev tabele 9 odčitamo, katere orbitale v ustrezni upodobitvi lahko uporabimo za tvorbo hibridnih orbital.

upodobitev	Γ^{A_1}	Γ^{T_2}
orbitale <i>s</i>	S	
p		(p_x, p_y, p_z)
d		(d_{xy}, d_{xz}, d_{yz})

Tabela 10 Orbitale centralnega atoma, primerne za tvorbo hibridnih orbital v tetraedričnih molekulah.

V atomu ogljika je edina možna izbira orbitala 2s in vse tri orbitale 2p. Orbitale d ležijo energijsko previsoko, vendar je hibridizacija sd^3 mogoča pri atomih v višjih periodah periodnega sistema.

Uporaba projekcijskega operatorja

Tabelo 8 lahko povzamemo s tabelo 11, s čimer olajšamo nadaljnje računanje.

	Ε	8 <i>C</i> ₃	$3C_{2}$	$6S_4$	6σ	
ϕ_i	ϕ_i	2 <i>S</i>	$S - \phi_i$	$2(S-\phi_i)$	$S + 2\phi_i$	

Tabela 11 Povzetek tabele 8, kjer smo s *S* označili vsoto $S = \phi_1 + \phi_2 + \phi_3 + \phi_4$.

Uporaba projekcijskega operatorja (19) da:

$$P^{(A_1)}\phi_i = 6S \qquad \propto \frac{1}{2}S, \tag{44}$$

$$P^{(T_2)}\phi_i = 2(4\phi_i - S) \propto \frac{1}{\sqrt{12}}(4\phi_i - S).$$

Zveza med atomskimi orbitalami in dobljenimi projekcijami

Enodimenzionalna upodobitev A_1 ustreza simetriji orbitale *s*. Projekcijski operator lahko uporabimo na kateremkoli vektorju in dobimo, da je

$$s = \frac{1}{2} \left(\phi_1 + \phi_2 + \phi_3 + \phi_4 \right). \tag{45}$$

Za trodimenzionalno upodobitev T_2 moramo projekcijski operator uporabiti na treh vektorjih:

$$P^{(T_2)}\phi_1 \propto \frac{1}{\sqrt{12}} (3\phi_1 - \phi_2 - \phi_3 - \phi_4) = a_1 p_x + b_1 p_y + c_1 p_z,$$
(46)

$$P^{(T_2)}\phi_2 \propto \frac{1}{\sqrt{12}} (3\phi_2 - \phi_3 - \phi_4 - \phi_1) = a_2 p_x + b_2 p_y + c_2 p_z \text{ in}$$

$$P^{(T_2)}\phi_3 \propto \frac{1}{\sqrt{12}} (3\phi_3 - \phi_4 - \phi_1 - \phi_2) = a_3 p_x + b_3 p_y + c_3 p_z.$$

Izračun koeficientov

Koeficiente a_i , b_i , c_i dobimo tako, da poleg upoštevanja normalizacije preverimo, kam denimo vrtenje C'_3 za 120° okrog vektorja ϕ_1 , ki izraza $(3\phi_1 - \phi_2 - \phi_3 - \phi_4)$ ne spremeni, preslika orbitale $p_{\{x,y,z\}}$. Od tod dobimo, da je $a_1 = b_1 = c_1 = 1/\sqrt{3}$. Za določitev ostalih koeficientov si ogledamo še vrtenji C''_3 in C''_3 okrog vektorjev ϕ_2 in ϕ_3 .

Rezultat

Z reševanjem sistema po enakem postopku kot za sp^2 dobimo končno rešitev za hibridne orbitale sp^3 :

$$\begin{aligned}
\phi_{1} &= \frac{1}{2} \left(s + p_{x} + p_{y} + p_{z} \right), \\
\phi_{2} &= \frac{1}{2} \left(s - p_{x} - p_{y} + p_{z} \right), \\
\phi_{3} &= \frac{1}{2} \left(s + p_{x} - p_{y} - p_{z} \right), \\
\phi_{4} &= \frac{1}{2} \left(s - p_{x} + p_{y} - p_{z} \right).
\end{aligned}$$
(47)

*sp*³*d* – trigonalno bipiramidalna hibridizacija

Baza upodobitve

Trigonalno bipiramidalna molekula – podobno kot trikotna – pripada točkovni skupini D_{3h} . Za bazo vzamemo naslednje vektorje:

$$\phi_{1} = (0, 1, 0), \qquad (51)$$

$$\phi_{2} \qquad \phi_{4} \qquad \chi \qquad \phi_{2} = \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}, 0\right), \qquad \phi_{3} = \left(-\frac{\sqrt{3}}{2}, -\frac{1}{2}, 0\right), \qquad \phi_{4} = (0, 0, -1), \qquad \phi_{5} = (0, 0, -1).$$

Tabela transformacij

Transformacije vektorjev so prav tako zelo podobne tistim iz hibridizacije sp^2 . Ker se prvi trije vektorji ne mešajo s preostalima dvema, lahko obravnavamo tudi vsako skupino posebej. Z znakom za vzporedno bomo tako označili vektorje v ravnini z = 0 in z znakom za pravokotno preostala dva.

	Ε	20	-3	$3C_2$		σ_h	S_3		σ_{v}			
ϕ_1	ϕ_1	ϕ_2	ϕ_3	ϕ_1	ϕ_3	${oldsymbol{\phi}}_2$	ϕ_1	ϕ_2	ϕ_3	ϕ_1	ϕ_3	${oldsymbol{\phi}}_2$
ϕ_2	ϕ_2	ϕ_3	$oldsymbol{\phi}_1$	ϕ_3	ϕ_2	$oldsymbol{\phi}_1$	ϕ_2	ϕ_3	$oldsymbol{\phi}_1$	ϕ_3	ϕ_2	$oldsymbol{\phi}_1$
ϕ_3	ϕ_3	ϕ_1	ϕ_2	ϕ_2	$oldsymbol{\phi}_1$	ϕ_3	ϕ_3	$oldsymbol{\phi}_1$	ϕ_2	ϕ_2	$oldsymbol{\phi}_1$	ϕ_3
ϕ_4	ϕ_4	ϕ_4	ϕ_4	ϕ_5	ϕ_5	ϕ_5	ϕ_5	$oldsymbol{\phi}_5$	ϕ_5	ϕ_4	ϕ_4	ϕ_4
ϕ_5	ϕ_5	ϕ_5	ϕ_5	ϕ_4	ϕ_4	ϕ_4	ϕ_4	ϕ_4	ϕ_4	ϕ_5	ϕ_5	ϕ_5
$\chi^{ m hib}_{\parallel}$	3	C)		1		3	0		1		
$\chi_{\perp}^{ m hib}$	2	2		0		0	0		2			
$\chi^{ m hib}$	5	2			1		3	0		3		

Tabela 12 Rezultat delovanja simetrijskih operacij na posamezne vektorje. Oznake so enake kot v tabeli 3. Ker se prvi trije vektorji ne mešajo s preostalima dvema, ju lahko obravnavamo ločeno.

Razcep na nerazcepne upodobitve

S pomočjo tabele 4 obe upodobitvi razcepimo na:

Določitev primernih orbital

Orbitale, ki ustrezajo dobljenim upodobitvam, so navedene v tabeli 13. Pri tem orbitale *s*, p_x in p_y porabimo za konstrukcijo treh orbital v ravnini, orbitali p_z in p_{z^2} pa za preostali hibridni orbitali izven ravnine.

upodobitev	$\Gamma^{A_1'}$	$\Gamma^{E'}$	$\Gamma^{A_2''}$
orbitale <i>s</i>	S		
p		(p_x, p_y)	p_z
d	d_{z^2}	$(d_{x^2-y^2}, d_{xy})$	

Tabela 13Atomske orbitale, primerne za tvorbohibridnih orbital v trigonalno bipiramidalnih molekulah.

Uporaba projekcijskega operatorja

V tabeli 14 smo povzeli transformacijsko tabelo, pri čemer smo uporabili oznake $i \in \{1, 2, 3\}, j \in \{4, 5\}, S = \phi_1 + \phi_2 + \phi_3$, s ϕ'_j pa smo označili eno od obeh orbital izven ravnine, ki ni enaka ϕ_j .

	Ε	$2C_3$	$3C_{2}$	σ_h	S_3	σ_v
ϕ_i	ϕ_i	$S - \phi_i$	S	ϕ_i	$S - \phi_i$	S
ϕ_j	ϕ_j	$2\phi_j$	$3 \phi_j'$	ϕ_j'	$2 \phi_j'$	$3\phi_j$

Tabela 14Povzetek tabele 12.

Od tod izračunamo delovanje projekcijskih operatorjev na bazne vektorje (enačba (19)).

$$P^{(A'_{1})}\phi_{i} = 4S \qquad \propto \frac{1}{\sqrt{3}}S,$$

$$P^{(E')}\phi_{i} = 2(3\phi_{i} - S) \propto \frac{1}{\sqrt{6}}(3\phi_{i} - S),$$

$$P^{(A'_{1})}\phi_{j} = 6(\phi_{j} + \phi'_{j}) \propto \frac{1}{\sqrt{2}}(\phi_{j} + \phi'_{j}),$$

$$P^{(A''_{2})}\phi_{j} = 6(\phi_{j} - \phi'_{j}) \propto \frac{1}{\sqrt{2}}(\phi_{j} - \phi'_{j}).$$
(53)

Zveza med atomskimi orbitalami in dobljenimi projekcijami

Prve tri hibridne orbitale se izražajo enako kot v primeru hibridizacije sp^2 , preostali dve pa sta linearni kombinaciji orbital p_z in d_{z^2} . S pomočjo zrcaljenja preko z = 0izračunamo ali kar uganemo (d_{z^2} mora biti simetrična, p_z pa antisimetrična glede na σ_h), da mora veljati:

$$p_z = \frac{1}{\sqrt{2}} \left(\phi_4 - \phi_5 \right)$$
 in (54)

$$d_{z^2} = \frac{1}{\sqrt{2}} \left(\phi_4 + \phi_5 \right). \tag{55}$$

Rezultat

$$\phi_{1} = \left(\frac{1}{\sqrt{3}}s + \frac{2}{\sqrt{6}}p_{y}\right), \qquad (56)$$

$$\phi_{2} = \left(\frac{1}{\sqrt{3}}s - \frac{1}{\sqrt{2}}p_{x} + \frac{2}{\sqrt{6}}p_{y}\right), \qquad (56)$$

$$\phi_{3} = \left(\frac{1}{\sqrt{3}}s + \frac{1}{\sqrt{2}}p_{x} + \frac{2}{\sqrt{6}}p_{y}\right), \qquad (56)$$

$$\phi_{4} = \left(+ \frac{1}{\sqrt{2}}p_{z} + \frac{1}{\sqrt{2}}d_{z^{2}}\right), \qquad (56)$$

$$\phi_{5} = \left(- \frac{1}{\sqrt{2}}p_{z} + \frac{1}{\sqrt{2}}d_{z^{2}}\right).$$

$$\phi_{1} \qquad \phi_{2} \qquad \phi_{3} \qquad \phi_{4} \qquad \phi_{5}$$

*sp*³*d*² – oktaedrična hibridizacija

Baza upodobitve

Oktaedrična molekula pripada simetrijski grupi O_h . Izberemo si naslednje bazne vektorje:

Karakter transformacij

Namesto celotne tabele transformacij (ki jo sicer moramo izračunati, če želimo uporabiti projekcijski operator) zapišimo le karakterje posameznih geometrijskih operacij:

	Ε	8 <i>C</i> ₃	$6C_{2}$	$6C_{4}$	$3C_{2}$	i	8 <i>S</i> ₆	$6S_4$	$6\sigma_d$	$3\sigma_h$
$\chi^{\rm hib}$	6	0	0	2	2	0	0	0	0	4

Tabela 15 Karakterji simetrijskih operacij iz grupe O_h v izbrani bazi.

Razcep na nerazcepne upodobitve

O_h	E	8 <i>C</i> ₃	$6C_{2}$	$6C_{4}$	$3C_{2}$	i	8 <i>S</i> ₆	$6S_4$	$6\sigma_d$	$3\sigma_h$
A_{1g}	1	1	1	1	1	1	1	1	1	1
A_{2g}	1	1	-1	-1	1	1	1	-1	-1	1
$E_{\mathcal{G}}$	2	-1	0	0	2	2	-1	0	0	2
T_{1g}	3	0	-1	1	-1	3	0	1	-1	-1
T_{2g}	3	0	1	-1	-1	3	0	-1	1	-1
A_{1u}	1	1	1	1	1	-1	-1	-1	-1	-1
A_{2u}	1	1	-1	-1	1	-1	-1	1	1	-1
E_u	2	-1	0	0	2	-2	1	0	0	-2
T_{1u}	3	0	-1	1	-1	-3	0	-1	1	1
T_{2u}	3	0	1	-1	-1	-3	0	1	-1	1

Tabela 16Tabela karakterjev za O_h .

Z uporabo tabele karakterjev za grupo ${\cal O}_h$ (tabela 16) in enačbe (15) upodobitev razcepimo na

$$\Gamma^{\text{hib}} = \Gamma^{A_{1g}} \oplus \Gamma^{E_g} \oplus \Gamma^{T_{1u}}.$$
(61)

Določitev primernih orbital

V tabelah karakterjev so za dobljene upodobitve navedene naslednje atomske orbitale:

upodobitev	$\Gamma^{A_{1g}}$	$\Gamma^{E_{\mathcal{G}}}$	$\Gamma^{T_{1u}}$
orbitale <i>s</i>	S		
p			(p_x, p_y, p_z)
d		(d_{z^2}, d_{x^2-y})	,2)

Tabela 17Atomske orbitale, primerne za tvorbohibridnih orbital v oktaedričnih molekulah.

Za tvorbo hibridnih orbital v oktaedrični molekuli potrebujemo šest atomskih orbital, torej moramo uporabiti vse od naštetih.

Uporaba projekcijskega operatorja

Matrike za delovanje simetrijskih operacij na posamezne elemente nismo zapisali, vseeno pa zapišimo povzetek – vsoto vseh elementov, ki jih dobimo kot rezultat delovanja simetrijskih elementov nekega razreda na vektor ϕ_i .

	Ε	8 <i>C</i> ₃	$6C_2$	$6C_4$	$3C_2$
ϕ_i	ϕ_i	$2(S-\phi_i-\phi_i')$	$S - \phi_i + \phi'_i$	$S + \phi_i - \phi'_i$	$\phi_i + 2\phi'_i$
	i	8 <i>S</i> ₆	$6S_{4}$	$6\sigma_d$	$3\sigma_h$
	ϕ'_i	$2(S-\phi_i-\phi_i')$	$S - \phi_i + \phi'_i$	$S + \phi_i - \phi'_i$	$2\phi_i + \phi'_i$

Tabela 18 Povzetek tabele simetrijskih operacij. Oznaka *S* pomeni vsoto $\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6$, medtem ko smo s ϕ'_i označili $\phi_{(i+3) \mod 6}$ oziroma »– ϕ_i «. Tretja in četrta vrstica sta zgolj nadaljevanje prvih dveh.

Rezultati projekcij, dobljenih iz skalarnega produkta vrstic v tabelah 16 in 18, je naslednji:

$$P^{(A_{1g})}\phi_{i} = 8\phi_{i} \qquad \propto \frac{1}{\sqrt{6}}S,$$

$$P^{(E_{g})}\phi_{i} = 4(3\phi_{i} + 3\phi_{i}' - S) \propto \frac{1}{\sqrt{12}}(3\phi_{i} + 3\phi_{i}' - S),$$

$$P^{(T_{1u})}\phi_{i} = 8(\phi_{i} - \phi_{i}') \qquad \propto \frac{1}{\sqrt{2}}(\phi_{i} - \phi_{i}').$$
(62)

Zveza med atomskimi orbitalami in dobljenimi projekcijami

Enodimenzionalna upodobitev ustreza kar orbitali s:

$$P^{(A_{1g})}\phi_1 \propto \frac{1}{\sqrt{6}}(\phi_1 + \phi_2 + \phi_3 + \phi_4 + \phi_5 + \phi_6) = s.$$
(63)

Projekcijski operator v tridimenzionalni upodobitvi moramo uporabiti na treh vektorjih. Rezultat zlahka pripišemo trem orbitalam *p*:

$$P^{(T_{1u})}\phi_{1} \propto \frac{1}{\sqrt{2}}(\phi_{1} - \phi_{4}) = p_{x},$$

$$P^{(T_{1u})}\phi_{2} \propto \frac{1}{\sqrt{2}}(\phi_{2} - \phi_{5}) = p_{y},$$

$$P^{(T_{1u})}\phi_{3} \propto \frac{1}{\sqrt{2}}(\phi_{3} - \phi_{6}) = p_{z}.$$
(64)

Z nekaj računanja hitro pridemo do zaključka, da z delovanjem projekcijskega operatorja iz dvodimenzionalne upodobitve na tretjem vektorju dobimo rezultat, ki ustreza simetrijskim lastnostim orbitale d_{z^2} :

$$P^{(E_g)}\phi_3 \propto \frac{1}{\sqrt{12}}(2\phi_3 - \phi_1 - \phi_2 + 2\phi_6 - \phi_4 - \phi_5) = d_{z^2},$$
(65)

nakar potrebujemo le še zadnji linearno neodvisen vektor. Če s projekcijskim operatorjem delujemo na ϕ_1 in ϕ_2 :

$$P^{(E_g)}\phi_1 \propto \frac{1}{\sqrt{12}}(2\phi_1 - \phi_2 - \phi_3 + 2\phi_4 - \phi_5 - \phi_6), \tag{66}$$

$$P^{(E_g)}\phi_2 \propto \frac{1}{\sqrt{12}}(2\phi_2 - \phi_3 - \phi_1 + 2\phi_5 - \phi_6 - \phi_4), \tag{67}$$

in rezultat odštejemo ter normiramo, dobimo še zadnjo orbitalo:

$$d_{x^2 - y^2} = \frac{1}{2}(\phi_1 - \phi_2 + \phi_4 - \phi_5).$$
(68)

Rezultat

Opazimo, da so orbitale ϕ_1 , ϕ_2 , ϕ_4 in ϕ_5 enake, ϕ_3 in ϕ_6 pa se razlikujeta, kar »podre« našo predpostavko, da mora biti vseh šest hibridnih orbital enakovrednih. Metoda torej dobro deluje za hibridizacije sp, sp^2 in sp^3 , pri hibridizacijah sp^3d

in sp^3d^2 pa nagaja oblika orbital *d*, kjer predpostavimo obstoj »preferenčne smeri« *z*. Medtem ko lahko iz orbital *p* sestavimo linearne kombinacije, ki so neodvisne od osnovne orientacije molekule, bi pri trigonalno bipiramidalni in oktaedrični molekuli dobili drugačno obliko hibridnih orbital, če bi na začetku izbrali drugačno orientacijo molekule. Pri hibridizaciji sp^3d se sicer lahko izgovarjamo na to, da sta orbitali v smeri *z* dejansko drugačni, pri oktaedrični molekuli pa bi morali izhajati iz drugačnih »orbital *d*«.

3.3. Hibridne orbitale z vezmi π

Postopek računanja hibridnih orbital z vezmi π je enak kot za orbitale z enojnimi vezmi, le da potrebujemo novo bazo. Za vezi π namreč ni pomembna le njihova lega, temveč tudi orientacija, zato jih predstavimo z vektorji, pravokotnimi na vozelno ravnino vezi, ki naj kažejo od negativne proti pozitivni strani valovne funkcije. Na mestu vsake vezi potrebujemo dva medsebojno pravokotna vektorja (pravokotna tudi na enojno vez), po enega za vsako vez π .

Primer trikotne molekule

Baza upodobitve

V primeru molekule BCl₃ (slika 11) so tri vezi v ravnini (»in plane«) in tri izven ravnine (»out of plane«) ter se pri simetrijskih operacijah ne mešajo med seboj, zato lahko obravnavamo vsako skupino posebej (česar ne moremo vedno narediti pri ostalih geometrijah).

Slika 11 Baza upodobitve za hibridne orbitale π v trikotni molekuli.

Za uspešno tvorbo vezi π mora orientacija šestih izbranih vektorjev ustrezati orientaciji pripadajočih orbital v sosednjih (klorovih) atomih.

Tabela transformacij

	Ε	C_3	C'_2	σ_h	S_3	σ'_v
ϕ_1	ϕ_1	${oldsymbol{\phi}}_2$	$-\phi_1$	$-\phi_1$	$-\phi_2$	ϕ_1
ϕ_2	ϕ_2	ϕ_3	$-\phi_3$	$-\phi_2$	$-\phi_3$	ϕ_3
ϕ_3	$oldsymbol{\phi}_3$	ϕ_1	$-\phi_2$	$-\phi_3$	$-\phi_1$	${oldsymbol{\phi}}_2$
X⊥	3	0	-1	-3	0	1
ϕ_4	ϕ_4	ϕ_5	$-\phi_4$	ϕ_4	ϕ_5	$-\phi_4$
ϕ_5	ϕ_5	$oldsymbol{\phi}_6$	$-\phi_6$	ϕ_5	$oldsymbol{\phi}_6$	$-\phi_6$
ϕ_6	$oldsymbol{\phi}_6$	ϕ_4	$-\phi_5$	$oldsymbol{\phi}_6$	ϕ_4	$-\phi_5$
XII	3	0	-1	3	0	-1

Tabela 19 V levem stolpcu je začetni vektor, v osrednjem delu tabele pa vektor, v katerega se preslika po simetrijski operaciji iz prve vrstice.

Razcep na nerazcepne upodobitve

Iz karakterjev posameznih upodobitev

D _{3h}	Ε	$2C_3$	$3C_2$	σ_h	$2S_{3}$	$3\sigma_v$
$\Gamma^{ ext{hib}}_{\!\!\perp}$	3	0	-1	-3	0	1
$\Gamma^{ ext{hib}}_{\parallel}$	3	0	-1	3	0	-1

Tabela 20 Karakterji za izbrani upodobitvi

in s tabelo karakterjev (tabela 4) dobimo razcep:

$$\Gamma_{\perp}^{\text{hib}} = A_2^{\prime\prime} \oplus E^{\prime\prime}$$

$$\Gamma_{\parallel}^{\text{hib}} = A_2^{\prime} \oplus E^{\prime}.$$
(70)

Določitev primernih orbital

Iz tabele karakterjev odčitamo, da za *vezi izven ravnine* upodobitvi A_2'' ustreza orbitala p_z , upodobitvi E'' pa degenerirani orbitali (d_{xz}, d_{yz}) .

Atom bora nima energijsko dostopnih orbital *d*, lahko pa samo z orbitalo p_z tvori eno samo vez π , ki se enakomerno porazdeli v vseh treh smereh. (V resnici je vez med

borom in halidom krajša od dolžine, ki bi jo pričakovali pri enojni vezi, kar pomeni, da ima vez med atomi vsaj delno značaj dvojne vezi.)

Atomi višje v periodnem sistemu pa lahko izven ravnine tvorijo hibridizacijo pd^2 iz orbital p_z , d_{xz} in d_{yz} .

Za vezi *v molekulski ravnini* upodobitvi A'_2 ne ustreza nobena orbitala, medtem ko za upodobitev E' najdemo dva degenerirana para orbital: (p_x, p_y) in $(d_{x^2-y^2}, d_{xy})$. Za atom bora je energija orbital d prav tako previsoko, orbitali p_x in p_y pa že sodelujeta pri tvorbi vezi σ . Pri ostalih atomih tretje skupine pa lahko orbitali $d_{x^2-y^2}$ in d_{xy} tvorita dve vezi π v ravnini, ki se enakomerno razporedita v vse tri smeri.

Primer oktaedrične molekule

Baza upodobitve

Pri okta
edrični geometriji potrebujemo dvanajst osnovnih vektorjev za upodobitev vez
i π (slika 12).

Slika 12 Osnovni vektorji za upodobitev vezi π v oktaedrični molekuli.

Razcep upodobitve

V tem primeru ne moremo ločeno obravnavati vezi π v ravnini in izven ravnine, saj se vseh dvanajst vektorjev meša med seboj. Iz karakterjev upodobitve (tabela 21)

O_h	Ε	8 <i>C</i> ₃	$6C_{2}$	$6C_4$	$3C_{2}$	i	$6S_4$	8 <i>S</i> ₆	$3\sigma_h$	$6\sigma_d$
$\chi^{ m hib}$	12	0	0	0	-4	0	0	0	0	0

in tabele karakterjev lahko upodobitev razcepimo na:

$$\Gamma^{\text{hib}} = \Gamma^{T_{1g}} \oplus \Gamma^{T_{2g}} \oplus \Gamma^{T_{1u}} \oplus \Gamma^{T_{2u}}.$$
(71)

Določitev primernih orbital

Orbitale, ki ustrezajo dobljenim neracepnim upodobitvam, so navedene v tabeli 22.

upodobitev	$\Gamma^{T_{1g}}$	$\Gamma^{T_{2g}}$	$\Gamma^{T_{1u}}$	$\Gamma^{T_{2u}}$
orbitale <i>p</i>			(p_x, p_y, p_z))
d		$(d_{xy}, d_{xz}, d_{xz}, d_{xz})$	$d_{yz})$	

Ker so bile orbitale p najverjetneje uporabljene že za tvorbo vezi σ , ostanejo za tvorbo vezi π le še tri orbitale d, ki se enakomerno porazdelijo v vseh šest smeri.

Zaključek

V seminarju smo se naučili, kako zgolj na osnovi simetrije in brez uporabe kvantne mehanike hibridne orbitale lahko zapišemo kot linearno kombinacijo atomski orbital, katerih obliko že poznamo. Izračunali in narisali smo oblike vse petih tipov hibridizacij, ki tvorijo vezi sigma ter opisali dva primera z vezmi pi. Pri hibridizacijah s petimi in šestimi sosedi žal nismo mogli dobiti povsem enakovrednih orbital, nepričakovano pa smo izvedeli, da je tudi v molekuli BF₃ prisoten karakter dvojne vezi.

Za natančnejši opis stanja elektronov v izbrani molekuli bi morali namesto hibridnih uporabljati molekulske orbitale, vendar že hibridne orbitale zadovoljivo opišejo in razložijo geometrijo širokega spektra molekul in so kot take uporabno matematično orodje v kemiji.

Literatura

- [1] Prasad R. K. *Quantum chemistry*. New Age Science, Tunbridge Wells, 4th edition, 2009.
- [2] Willock David J. *Molecular symmetry*. J. Wiley & Sons, Chichester, 2009.
- [3] Bishop David M. *Group theory and chemistry*. Dover Publications, New York, 1993.
- [4] Kim Shoon Kyung. *Group theoretical methods and appllications to molecules and crystals*. Cambbridge University Press, Cambridge, 1999.
- [5] Vincent Alan. *Molecular symmetry and group theory: a programmed introduction to chemical applications*. J. Wiley & Sons, Chichester [etc.], 2nd edition, 2001.
- [6] Kettle Sidney Francis Alan. *Symmetry and structure: readable group theory for chemists.* John Wiley & Sons, Chichester, 3rd edition, 2007.
- [7] URL slike: http://knol.google.com/k/-/-/rxnelfajlojs/htmij7/localizedmo-ethylene .jpg
- [8] URL slike: http://www.d.umn.edu/%7Epkiprof/ChemWebV2/Overlap/images/sigma -dz2.jpg
- [9] URL slike: http://iverson.cm.utexas.edu/courses/310M/Handouts/Handoutsfl05 /Pibonds.html
- [10] URL slike: http://commons.wikimedia.org/wiki/File:D-d-pi-MO-solid-3D-balls.png
- [11] URL slike: http://commons.wikimedia.org/wiki/File:Dimolybdenum-Mo2-delta-bond -Spartan-HF-3-21G-3D-side.png
- [12] URL slike: http://www.ch.ic.ac.uk/rzepa/blog/?p=580&cpage=1

Skice so bile narejene s paketom makrojev za $T_EX - pgf/TikZ$, 3D predstavitve atomskih in hibridnih orbital pa naračunane in izrisane s programom PovRay iz vodikovih oziroma linearne kombinacije vodikovih orbital, z rezom pri konstantni absolutni vrednosti valovne funkcije.

Priloge

Mullikenovi simboli za nerazcepne upodobitve

A	nedegenerirana orbitala, simetrična glede na glavno os C_n
В	nedegenerirana orbitala, antisimetrična glede na glavno os C_n
Ε	dvojno degenerirana orbitala (de. <i>entartet</i>)
Т	trojno degenerirana orbitala
\Box_g \Box_u	simetrično glede na središče inverzije (de. <i>gerade</i>) antisimetrično glede na središče inverzije (de. <i>ungerade</i>)
\square_1 \square_2	simetrično glede na C_2 (pravokotno na C_n) antisimetrično glede na C_2 (pravokotno na C_n)
□′ □″	simetrično glede na σ_h antisimetrično glede na σ_h