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Abstract

New experimental data on neutrino oscillation suggest a definite form of
the neutrino mixing matrix. Within the present bounds a number of models
has been suggested, usually in the frame of non-Abelian discrete symmetries.
In this work, the most popular group for this purpose, A4, is studied and a
physical model is constructed. Also, the possible origin of such a symmetry is
investigated in terms of breaking a continuous symmetry.
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1 Introduction

The standard model (SM) of particles and interactions was constructed in such a way as to
contain massless neutrinos, which was a reasonable assumption at the time of its creation.
For decades, physicists were suspecting otherwise, assuming that these particles have an
extraordinary small, but non-vanishing mass. Numerous experiments on neutrino oscillations
finally proved them right, which was the first sign of physics beyond the SM. This means
that, like in the quark sector, there is a difference between mass and flavor eigenstates. To
put it in a different way, the neutrinos entering interactions in actual measurements, being
the ones with well defined flavor, are mixtures of mass eigenstates, or as physicists like to
refer to them, the physical states. One can directly connect the according mixing angles
between the states in the two mentioned bases to the differences between squared masses
of the different mass states, which will be shown in chapter 2. These values lead to mixing
patterns suggesting an underlying symmetry. In particular, the matrix inducing the change
of basis between flavor and mass eigenstates acquires a definite shape within a few σ and can
thus be connected to some symmetry group.

This immediately raises the question of which particular group actually is at work. Non-
Abelian discrete symmetries have been studied widely in this context, becoming an important
tool for model building in flavor physics. To be specific, A4, the group of even permutations
of four objects is the mostly addressed one in this area, and will be explained in some detail in
this seminar. On the other hand, one might also want to explain the origin of the symmetries
at work. A possible mechanism is the breaking of a continuous (gauge) group down to its
discrete subgroup. Chapter 5 gives the simplest choice of such a group. Other possibilities
include extra dimensions and superstring theory, which will not be part of this work ([4], [5]).

An interesting feature of neutrino mixing is that the angles are completely different from
those in the quark sector. While the Cabbibo-Kobayashi-Maskawa (CKM) matrix is near
unity, the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix, corresponding to neutrino
mixing, is far from that. There has been a number of attempts to find a theory which
naturally implements both patterns, usually in the picture of grand unified theories (GUTs).

Experiments investigating solar and atmospheric neutrinos measured two distinct mixing
angles. This demands the existence of at least three different mass eigenstates of which two,
in principle, must be massive. We know that two mixing angles, θ23 and θ12, are large, the
former being near maximal, while θ13, having a very small upper limit, could as well vanish.
([7], table [1]). Given the notation ∆m2

sun ≡ |m2|2−|m1|2 > 0 and ∆m2
atm ≡ |m3|2−|m2|2,

one can differ between three possible scenarios:

• Degenerate: |m1| ∼ |m2| ∼ |m3| � |mi −mj |
• Inverted hierarchy: |m1| ∼ |m2| � |m3|
• Normal hierarchy: |m3| � |m1,2|

It is obvious at this point that oscillation experiments do not provide any information on the
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Table 1: Fits to neutrino oscillation data
Quantity Fogli et al., 2008 [1] [2] Maltoni and Schwetz, 2008 [3]

∆m2
sun(10−5eV 2) 7.67+0.16

−0.19 7.65+0.23
−0.20

∆m2
atm(10−3eV 2) 2.39+0.11

−0.08 2.40+0.12
−0.11

sin2θ12 0.312+0.019
−0.018 0.304+0.022

−0.016

sin2θ23 0.466+0.073
−0.058 0.50+0.07

−0.06

sin2θ13 0.016± 0.010 0.010+0.016
−0.011

absolute neutrino mass scale. Upper limits are obtained from the end point of the tritium
beta decay spectrum, measurements of the cosmic microwave background (CMB) as well as
from neutrinoless beta decay (0νββ). The discovery of the latter would not only give us
information about the absolute mass scale of neutrinos but would also establish lepton num-
ber (L) violation as well as the Majorana nature of these particles. In close connection to
that fact, one could explain the neutrinos’ extremely small masses by the so called see-saw
mechanism, where the neutrino mass is inversely proportional to the large scale at which L
is violated.

In chapter 2 basic concepts of neutrino mass and oscillations are explained, chapter 3
gives an overview of the groups S4 and A4 together with their geometrical interpretation, in
chapter 4 a concrete model based on the group A4 is given, while in chapter 5 the idea of
SO(3) → A4 breaking is discussed.
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2 Neutrino masses

If one wants to work in the frame of the SM gauge group of electroweak interactions, SU(2)L×
U(1)Y , it is possible to give the neutrinos a mass by simply adding new degrees of freedom.
The minimal choice is to introduce a very heavy right handed neutrino. Not only does that
lead to the familiar Yukawa term, but also to a Majorana mass term in the Lagrangian, which
violates L

−Lmν = yν νR Hc l + M νR νc
R + h.c., (1)

where yν is the Yukawa coupling, l the left handed lepton dublet and M the mass of the right
handed neutrino νR. Diagonalization of the mass matrix then leads to the famous see-saw
formula

mν = −mD
T M−1 mD, (2)

making the mass of neutrinos inversely proportional to the large right handed neutrino mass.
For mν ∼

√
∆m2

atm ∼ 0.5 eV and the Dirac mass mD ∼ v ∼ 200 GeV, M turns out to be
near the GUT scale, M ∼ 1015 GeV, which one could interprete as a link between neutrino
masses and grand unified theories.

2.1 Neutrino oscillations

The neutrino beam produced by charged current interactions in an experiment is a superpo-
sition of different mass states and the probability of finding a certain particle state in that
beam evolves with time. Thus neutrino oscillation experiments usually include great dis-
tances between the production point and the detector. It was mentioned before that mixing
angles can be expressed through mass squared differences. This can be done as follows [8].
Assume a neutrino with flavor l is created at time t = 0. In general, it is a superposition of
the physical states να, linked to them by a matrix U . After a time t, the state has evolved
into

|νl(t)〉 =
∑
α

e−iEαtUlα|να〉. (3)

Now, the probability of finding a different flavor state ν ′l in the original νl will be proportional
to multiples of the matrix elements of U times cos(Eα−Eβ), which directly leads to the mass
dependence through the relation m2 = E2 − p2. In this way, experimental data on the
observed probabilities restrict ∆m2 as a function of the mixing angles.
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2.2 Mixing and mass matrices

The matrix U can be parametrized in terms of three mixing angles (0 ≤ θij ≤ π/2) and one
phase φ (0 ≤ φ ≤ 2π) like

U =

 1 0 0
0 c23 s23

0 −s23 c23


 c13 0 s13e

iφ

0 1 0
−s13e

−iφ 0 c13


 c12 s12 0
−s12 c12 0

0 0 1

 . (4)

There are different approaches, for experimental results still contain large uncertainties (table
1). One can work in the frame of so called ”normal” models, where θ23 is not too close to
maximal, and θ13 does not vanish. In this work, the case of ”exceptional” will be studied,
where one assumes a maximal atmospheric angle and θ13 = 0. For c23 ∼ s23 ∼ 1/

√
2 and if

we keep only linear terms in u ≡ s13e
iφ, the mixing matrix becomes

U =

 c12 s12 u

−(s12 + c12u
∗)/
√

2 (c12 − s12u
∗)/
√

2 −1/
√

2
(s12 − c12u

∗)/
√

2 −(c12 + s12u
∗)/
√

2 1/
√

2

 . (5)

Putting θ13 exactly to zero and using the relation

mν = U∗diag(m1,m2,m3)U †, (6)

one gets the most general neutrino mass matrix that is symmetric under 2-3 (or µ − τ)
exchange [10]

mν =

 x y y
y z w
y w z

 , (7)

with complex coefficients x, y, z and w.
Finally, one can also use the ansatz sin2θ12 = 8/9, which leads to tri-bimaximal (TB)

mixing and the Harrison-Perkins-Scott (HPS) matrix

UHPS =


√

2
3

1√
3

0
− 1√

6
1√
3

− 1√
2

− 1√
6

1√
3

1√
2

 . (8)

This matrix can be reproduced in certain symmetry groups, which will be explained in the
following chapters. The name tri-bimaximal originates from merging the terms trimaximal
and bimaximal, the former reflecting the idea of uniform mixing of the second mass state, ν2

with the other two, while the third, ν3, mixes only (that is ’bimaximally’ for the given θ23

and θ13) with ν2.
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3 SN and its subgroups

As already mentioned before, A4 is widely used in the context of neutrino mixing. Here a
short overview of the permutation group SN in general will be given and afterwards S4 and
A4 will be discussed.

SN is also called the symmetric group and it consists of N ! elements, describing all possible
permutations among N objects. A common and very intuitive notation is

P =

(
1 2 3 ... n
p1 p2 p3 ... pn

)
, (9)

where the object i is replaced by the object pi. An arbitrary permutation may be broken up
into a product of cycles of lengths l1, l2, ... where e.g. a cycle of length l = 1 leaves a number
unmoved, while a cycle of length l = 2 symply transposes two numbers. All elements of SN

associated with the same structure in terms of cycle length [l1l2...] are in the same class [12].
More commonly, for two permutations P and P’ to be in the same class, there must be a
permutation Q such that QPQ−1 = P ′. Let us now turn to representations in certain vector
spaces, for this approach is more suitable for describing physical phenomena.

3.1 S4

As an illustration, let us have a look at S4, the group of permutations among four objects.
It consists of 4! = 24 elements and geometrically it has the symmetry of a cube. One can
see this by looking at a face of a cube and assigning its vertices numbers from one to four.
Then the remaining vertices will be labelled such that the same numbers correspond to two
vertices seperated by a spatial diagonal (fig. 1).

Figure 1: S4 as the symmetry of a cube
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The cube has 13 symmetry axes, three of order h = 4, six of order h = 2 and four of order
h = 3 (fig 2). The corresponding rotations form five conjugacy classes:

• C1: identity

• C2: 3 rotations by 180◦ about the 4-fold axes

• C3: 6 rotations by 180◦ about the 2-fold axes

• C4: 4 rotations by 120◦ and 4 rotations by 240◦ about the 3-fold axes

• C5: 3 rotations by 90◦ and 3 rotaions by 270◦ about the 4-fold axes

Thanks to the geometrical aspect of S4 it is possible to imagine the logic behind this
classification. For rotation groups, two rotations R and R’ are in the same class if the group
contains a rotation which carries the axis of R into the axis of R’. Lookig at the above classes
one can easily verify the result.

Figure 2: The symmetry axes of a cube

Thus S4 has five irreducible representations. If one denotes by mn the multiplicity of the
n-dimensional representation, using

∑
n mn = 5 and the relation [11]∑

α

[χα(C1)]2 =
∑
n

mnn2 = m1 + 4m2 + 9m3 + ... = 24, (10)

one gets that the irreducible representations of S4 contain two singlets 1 and 1′, one doublet
2 and two triplets 3 and 3′.

3.2 A4

A subgroup of SN is the so called alternating group, AN , which consists of only the even
permutations and thus has order N !/2. It turns out that A3 is nothing but Z3, the cyclic
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group of order 3, and the smallest non-Abelian group is A4. It has 12 elements and can be
viewed as the symmetry group of a tetrahedron, which is why it is often denoted by T.

(a) (b)

Figure 3: The symmetry axes of a tetrahedron

The tetrahedron has three symmetry axes of order h = 2 and four of order h = 3 (fig. 3).
There are four conjugacy classes:

• C1: identity

• C2: 4 rotations by 120◦ about the 3-fold axes

• C3: 4 rotations by 240◦ about the 3-fold axes

• C4: 3 rotations by 180◦ about the 2-fold axes

It is possible to generate all elements of A4 by two basic permutations, S = (4321) and
T = (2314) [9], whith the property

S2 = T 3 = (ST )3 = 1. (11)

In this presentation, the classes of A4 consist of [7]

• C1 : I = (1234)

• C2 : T = (2314), ST = (4132), TS = (3241), STS = (1423)

• C3 : T 2 = (3124), ST 2 = (4213), T 2S = (2431), TST = (1342)

• C4 : S = (4321), T 2ST = (3412), TST 2 = (2143),
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Table 2: Characters of A4

Class χ1 χ1′ χ1′′ χ3

C1 1 1 1 3

C2 1 ω ω2 0

C3 1 ω2 ω 0

C4 1 1 1 -1

where it can be seen that the classes are according to powers of T (using T 3 = 1). Going
on in the same way as with S4, one obtains that A4 has four irreducible representations,
three singlets, 1, 1′ and 1′′, and a triplet, 3. Now it is possible to study characters of A4,
having in mind that they are identical for elements in the same equivalence class. Let us
first look at the singlet representations. From S2 = I, C4 can have character +1 or −1, but
as T and ST belong to the same class, it follows χα(C4) = 1. Similarly, T 3 = 1 leads to
χα(T ) = 1, ω, ω2 (where ω3 = 1), a different value for each singlet representation. On the
other hand, C3 = (C2)2, and in order for their elements to have different characters, one
simply interchanges ω and ω2.

In the three-dimensional unitary representation where S is diagonal, S and T are of the
form

S =

 1 0 0
0 −1 0
0 0 −1

 , T =

 0 1 0
0 0 1
1 0 0

 (12)

Considering their traces, the character table [2] is finished.
One immeditately sees that the multiplication rules for the singlets are: 1′ × 1′ = 1′′,

1′ × 1′′ = 1, 1′′ × 1′′ = 1′, as in the one-dimensional case characters equal representations.
The reduction of the 3× 3 product can be obtained using the relation [11]

mα =
1
N

∑
p

cpχ
(α)∗
p χp, (13)

where the subsctipt α refers to the according irreducible representation, cp is the number
of elements in a class, and χp = χR

p χS
p with R = S = 3 in this case. The result is 3 × 3 =

1 + 1′ + 1′′ + 3 + 3 and taking the product of two such triplets, (a1, a2, a3) and (b1, b2, b3),
gives [6]
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1 = a1b1 + a2b2 + a3b3

1′ = a1b1 + ω2a2b2 + ωa3b3

1′′ = a1b1 + ωa2b2 + ω2a3b3 (14)
3 ∼ (a2b3, a3b1, a1b2)
3 ∼ (a3b2, a1b3, a2b1).

Consider for example the 1′′, which is invariant under S, equation (12) and T1′′ = ω21′′.
From table [2] we see that ω2 corresponds to χ1′′(C2) = χ1′′(T ).
Furthermore, it is useful to have a look at the matrices in a basis where T is diagonal

T ′ = V TV † =

 1 0 0
0 ω 0
0 0 ω2

 , S = V SV † =
1
3

 −1 2 2
2 −1 2
2 2 −1

 , (15)

where

V =
1√
3

 1 1 1
1 ω2 ω
1 ω ω2

 . (16)

This will correspond to a diagonalization of the charged lepton mass matrix in physical
models.
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4 A flavor model with A4

Now we are in a position to apply A4 symmetries to lepton masses and mixing. We assign
leptons to the four irreducible representations of A4 such that the left-handed doublets l
transform as the triplet 3, and the right handed charged leptons eR, µR and τR as the
singlets 1, 1′ and 1′′, respectively. We also include right handed neutrinos in an A4 triplet
representation. In addition, two real triplets, ϕ and ϕ′, both of them gauge singlets, are
introduced to break the family symmetry of leptons, and are hence called flavons. The SM
Higgs doublet H is invariant under A4. A Yukawa Langrangian is constructed as follows:

−LY =
1
Λ

ye eRHc (ϕl) +
1
Λ

yµ µRHc(ϕl)′′ +
1
Λ

yτ τRHc(ϕl)′

+ M νRνc
R + yν νRHl + xν νRνc

R ϕ′ + h.c. + . . . (17)

This needs some explanation. First of all, in the notation at hand (33) transforms as 1,
(33)′ as 1′ and (33)′′ as 1′′. The heavy neutrino states due to the see-saw mechanism can
be integrated out, and the dots stand for higher dimensional operators. All of the terms in
LY have to be trivial singlets under the symmetry in question. Applying the reduction rules
from section (3.2) one sees that this is true. In the first three terms, the vacuum expectation
value (VEV) of H selects the charged leptons from the gauge doublets, which leads to their
masses. One requirement is still to be made that is not accounted for naturally by A4, and
this is the symmetry between µ − τ exchange in the neutrino sector. A suitable vacuum
alignment of the flavons will take care of that problem. One takes

〈ϕ〉 = (v, v, v)
〈ϕ′〉 = (v′, 0, 0), (18)

and as a result, 〈ϕ〉 will break A4 down to Z3 in the charged lepton sector and 〈ϕ′〉 will break
it to Z2 in the neutrino sector. (νc

RνR) in equation (17) is a 3 × 3 and in order to get a
singlet in the end, one needs the triplets in the reduction. As they both have a (2-3) mixing
in the first component, the vacuum allignment of ϕ′ selects exactly what we need. Thus the
neutrino mass matrix mν is of the form

mν =

 a 0 0
0 a d
0 d a

 , (19)

where the (2-3) components indeed reflect the Z2 symmetry. The charged lepton mass matrix
is
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ml = v
vd

Λ

 ye ye ye

yµ yµω2 yµω
yτ yτω yτω

2

 . (20)

It turns out that ml is diagonalized by the matrix V introduced in section (3.2). Actually,
the flavor basis is the basis in which S is diagonal, and the mass basis of charged leptons is
the one where T is diagonal. To reproduce the hierarchy among charged leptons, one can
add an Abelian flavor symmetry U(1)FN [14]. In such models, eR, µR and τR are assigned
Froggatt-Nielsen (FN) charges, for example 4, 2 and 0, respectively. Also, a flavon θ has
to be added, with FN charge -1 and a VEV 〈θ〉 ≡ λ < 1. Then, to make the terms in the
Lagrangian invariant under the U(1)FN symmetry, different powers of λ are needed for the
different generations of leptons, leading to a mass hierarchy.After changing to the charged
lepton mass basis, the neutrino matrix becomes

mν =

 a + 2d/3 −d/3 −d/3
−d/3 2d/3 a− d/3
−d/3 a− d/3 2d/3

 , (21)

which is indeed of the form in equation (7) of section (2.2) and thus will be diagonalized by
the HPS matrix (8).
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5 The breaking of SO(3) to A4

If indeed A4 explains the flavor structure in the lepton sector, the question of its origin
remains. One of the numerous existing ideas is the spontaneous breaking of a continuous
symmetry. The minimal choice is to consider SO(3) [13], which has A4 as a subgroup. In
the next section, a decomposition of the irreducible representations of SO(3) in terms of
irreducible representations of A4 will be given, which will allow us to implement the particle
content of our model into the higher symmetry.

5.1 The connection between A4 and SO(3)

In section (3.2), a parallel between A4 and the symmetry of a tetrahedron was drawn, which
indicates that A4 is a subgroup of rotations in three dimensions. In general, the characters
of SO(3) are given by

χj(θ) =
sin[(2j + 1)θ/2]

sin(θ/2)
, (22)

where j labels the irreducible representation and θ is the angle of rotation. This gives us
the character table [3] of the first six irreducible representations in the four classes that
correspond to A4.

Table 3: Characters of SO(3)

Class χ0 χ1 χ2 χ3 χ4 χ5

0◦ 1 3 5 7 9 11

120◦ 1 0 -1 1 0 -1

240◦ 1 0 -1 1 0 -1

180◦ 1 -1 1 -1 1 -1

Using table [3] and from relation (13), section (3.2), one obtains the decomposition of
SO(3), table [4].

5.2 A model based on SO(3) → A4

To break the symmetry, we need to introduce a scalar, T , which transforms as an irreducible
representaion of SO(3) and in order to end up in an A4 invariant vacuum, this representation
has to contain a singlet under A4 in its decomposition. From table [4] we see that the
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Table 4: Multiplicities of A4 irreducible representaions in SO(3)

j 0 1 2 3 4 5

n1 1 0 0 1 1 0

n1′ 0 0 1 0 1 1

n1′′ 0 0 1 0 1 1

n3 0 1 1 2 2 3

smallest non-trivial representation for this porpuse is the 7 of SO(3) and is a rank three
tensor. Turning to the fermions, one sees that there is no problem with l, eR and νR as they
have the same representations as under A4. On the other hand, the 1′ and the 1′′, representing
the right-handed µ and τ , respectively, do not correspond to irreducible representations of
SO(3) but can, in the simplest scenario, be obtained from the 5. Consequently, some extra
right-handed fields (ρ) arise, that transform as a 3 under A4. By adding also an extra left-
handed triplet field η, the new states can be integrated out if we give them a large Dirac
mass. The right handed 5 can be written as [13]

R =

 µR + τR ρ3 ρ2

ρ3 ωµ + ω2τ ρ1

ρ2 ρ1 ω2µ + ωτ

 . (23)

Having in mind the multiplication rules for representations of SO(3), the most general mass
Lagrangian for charged leptons in this model is

−L =
1
Λ

ye eRϕaHc la +
1
Λ

yR RabϕaHc lb +
1
Λ

yT
R RabT abcHc lc + y′eeRϕaηa

+ y′R Rabϕaηb + yT ′
R RabT abcηc +

1
Λ

yφ εabcRadφbdHc lc + y′φ εabcRadφbdηc.

(24)

Here, a new scalar φ (a 5 in SO(3)) was introduced in order to make the µ and τ masses
nondegenerate. This is an alternative to the Froggatt-Nielsen mechanism mentioned in section
4. ϕ and ϕ′ get VEVs as before, 〈T 〉 ∼ vT , while

〈φ〉 =

 0 vφ vφ

vφ 0 vφ

vφ vφ 0

 . (25)
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The hierarchy of the constants is assumed to be

Λ � vT � v ∼ v′ ∼ vφ � vh. (26)

Taking this into account, the charged lepton mass matrix, written in 3×3 blocks, is of the
form

ml ∼
(

vhv/Λ v
vhvT /Λ vT

)
. (27)

Basically, the mixings between the three light states (e, µ, τ) and the heavy new states can
be neglected. The block corresponding to charged leptons is

ml =

 ye
vhv
Λ ye

vhv
Λ ye

vhv
Λ

q ωq ω2q
−q −ω2q −ωq

 , (28)

with

q = yR
vhv

Λ
+ yφ(ω2 − ω)

vhvφ

Λ
. (29)

This matrix can again be diagonalized by V from section (3.2). Thus one ends up with the
masses

me = |ye
vhv

Λ
|

mµ = |yR
vhv

Λ
− i
√

3yφ
vhvφ

Λ
| (30)

mτ = |yR
vhv

Λ
+ i
√

3yφ
vhvφ

Λ
|.

Now it should be clear why the scalar φ was introduced. Without it, the µ and the τ have
the same mass. In the neutrino sector the only change in comparison to the case of A4 is the
appearance of the scalar T . The Langrangian is

−LYν = M νa
R(νc

R)a + yν νa
RHla +

xν

Λ
νa

R(νc
R)b ϕ′T abc, (31)

leading to a mass matrix of the form (19). After changing to the basis of charged lepton mass
states, it is diagonalized by UHPS and has eigenvalues

m1 = y2
νv

2
h

Λ
MΛ + xνv′vT
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m2 = y2
νv

2
h

Λ
M

(32)

m3 = y2
νv

2
h

Λ
MΛ− xνv′vT

.

The measured values of ∆m2
12 and ∆m2

23 constraint xνv
′vT and MΛ to be of the same order,

which leads to the requirement v′ � M . This is possible to achieve because both can be
much above the weak scale. So we see that the model is constructed in such a way that it
is the UHPS matrix that diagonalizes the neutrino mass matrix in the end, thus obeying the
present experimental constraints.
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6 Conclusion

Recent experiments have provided not only proof for the existence of neutrino mass, but
also data on the differences of squared masses. Their connection to mixing angles gives
constraints on the final form of the UPMNS matrix, which has inspired a big number of
suggestions of underlying symmetries to the mechanism. In this work, A4, the smallest non-
Abelian discrete group, was taken as the underlying symmetry. Under the assumptions of
maximal atmospheric mixing, sin2θ13 being exactly zero and sin2θ12 = 8/9, UPMNS takes
the form of UHPS . Knowing this, one is lead to the most general form of the neutrino mass
matrix, which has to be reproduced in the frame of the assumed symmetry. Considering the
three dimensional representations of the basic generators of A4, it was shown that the two
different bases in which one of S, T is diagonal correspond to the flavor and mass basis of
charged leptons, respectively. One of the disadvantages of this approach is that it doesn’t
reproduce the mass hierarchy in the charged lepton sector, which raises the need for additional
symmetries or fields. What’s more, the experimental constraints on the entries of UPMNS

are still too weak to construct a solid model.
Assuming the introduced symmetry gives a good description of lepton flavor patterns,

the next step is to explain the origin of the stated symmetry group. In the last section, the
spontaneous breaking of an SO(3) gauge group was considered. The particle content of the
standard model (plus right handed neutrinos) can be implemented in this model, but to the
cost of introducing more new states. Also, due to some constraints on the vacuum expectation
values of the scalars, the neglect of higher orders in 1/Λ ceases to be justified. To be specific,
relation (31) suggests that the charged lepton mass scale is decreased in comparison to the
electroweak scale by a factor v/Λ, so Λ cannot be more then two orders of magnitude higher
than v.

In conclusion, even though it is tempting to base patterns of Yukawa bindings on grounds
of a mathematical symmetry group, no elegant description has yet been constructed and it is
going to take at least the collection of new experimental data to create a justified and solid
model.
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