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Abstract

The construction of the free energy for liquid crystalline systems is presented
using the same arguments as for solids in the linear theory of elasticity. The free
energy is derived for nematics in the director representation and in the tensorial
representation with the help of the group theory and for smectics in the director
representation. The two free energies for nematics are compared. The advantages
of the tensorial over the director representation and use of higher order invariants
are discussed.
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1 Introduction

Liquid crystals are very common in our lives. The vast majority of electronic devices
have displays that are based on liquid crystals (LCs). LC displays are being investi-
gated even at present, for example, to improve the resolution and response times with
tield-induced defects instead of mechanically confining the liquid crystal to cells [1].
By introducing small particles to liquid crystals, one can obtain very different and in-
teresting self-assembled structures of these particles which could be used as complex
materials and metamaterials. Recently, the first self-assembled 3D colloidal crystal in
LC was made [2] as was proposed theoretically [3, 4]. Another currently hot topic are
lasers from cholesteric liquid crystals [5] and microlasers based on small microdroplets
of liquid crystalline material [6]. Liquid crystal matrices are also useful for identifi-
cation of different molecules, a property that could be applied to different molecular
sensors [7].

To better understand such systems and even predict their behaviour, theory is of
great importance and the theoretical description can be complemented by modelling
and simulations. Systems can be described and modelled at very different scales: from
molecular to macroscopic (continuum) scales. The microscopic scale is used when the
molecular details are important, but usually at larger scales the molecular details can
be neglected to some extend since the collective behaviour becomes more crucial.

In microscopic approach each liquid crystalline molecule is modelled separately.
This approach is based on statistical physics. Here, basically only the shape of mo-
lecules and intermolecular potentials need to be known and thus the macroscopic
variables, such as volume, pressure, elastic constants, order, etc. can be calculated.
However, such approach is numerically very demanding and only a small number of
molecules can be modelled (up to ~ 10°).



The second approach is a mesoscopic one based on thermodynamics, where liquid
crystals are modelled phenomenologically. Therefore the exact microscopic picture is
not needed. However, one requires certain thermodynamic potentials. Since most ex-
periments are held at constant temperature and volume, the suitable thermodynamic
potential is the free energy F. The thermodynamic equilibrium then corresponds to
the minimum of F. As a result, by knowing the free energy, equilibrium structures
can be obtained.

This seminar gives an overview on the procedure of constructing the free energy
of liquid crystalline systems. It is organised as follows. In the first part, the physics of
liquid crystals is introduced. The second part of the seminar introduces the concepts
for constructing the free energy. The free energy is then calculated for an isotropic
solid and for a nematic liquid crystal. In Conclusions, the possible improvements are
discussed and the advantages and disadvantages of such approach are given.

2 Liquid crystals

Liquid crystals are oily materials that have properties in between liquids and solids.
They flow like ordinary liquids, yet have other properties, such as birefringence, that
are typical of crystals. The liquid crystalline mesophases are more ordered than lig-
uids, but less ordered than solids. The order of molecules (building blocks) can be
orientational and also partially positional, and can occur at certain temperatures (ther-
motropic liquid crystals) or at certain molecular concentration of the liquid crystalline
material in a solution (lyotropic liquid crystals) [8, 9, 10].

Microscopically, to generate liquid crystalline mesophase the molecules have to
be anisotropic, for example elongated or disc-like. Also the intermolecular potentials
have to be anisotropic and therefore the molecules tend to organise themselves [8, 9].
If only long-range orientational order is present (molecules tend to be parallel to a
certain direction), the mesophase is called nematic (Fig. 1b); while if the order is also
partially positional (molecules are typically in layers) the mesophases are called smectic
(Fig. 1d) and such mesophases typically occur at lower temperatures than nematics.
There also exist other mesophases, such as chiral nematic mesophase called cholesteric
(see Fig. 1c), where the molecules are aligned parallel to a certain direction, but this
direction changes in space and makes a helix.
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Figure 1: Different LC mesophases. (a) isotropic phase (“ordinary liquid”), (b) nematic mesophase,
(c) cholesteric mesophase (d) two different smectic mesophases.



To describe the order in the nematics, certain mesoscopic quantities have to be
introduced. In a nematic, molecules are on average parallel to a certain direction
that can be described by the unit vector n called director. The states n and —n are
indistinguishable. Due to the thermal fluctuations, the molecules are not perfectly
aligned to the director and this fluctuations around the vector n are measured by the
nematic order parameter S:

1
S = E<3cos219 —1), (1)

where ¢ describes the angle of deviation from the director and (.) is the ensemble
average. The values of S lie in the interval [—1/2,1]. The value S = 1 represents a per-
fectly ordered state, while the value S = 0 corresponds to a perfectly disordered state.
The value S = —1/2 represents a state, where molecules are aligned perpendicularly
to the director.

Equivalently, one can describe the nematic liquid crystalline systems with a tenso-
rial order parameter, where n and S are combined. It is defined as

S
Qij = 5 (3nin; — 6y;) , )

where i,j = x,y,z and 61-]~ is the Kronecker delta. This tensor is symmetric and trace-
less. Its largest eigenvalue is the nematic degree of order S with the corresponding
eigenvector n. The other two eigenvalues are equal to —S/2 and eigenvectors are
perpendicular to n [3, 8].

In smectics, the order parameter has two different components due to the layered
structure [10]: a nematic component (n and S) and a component that describes the
layered structure that can be described by the modulation of matter density p along z
axis (assuming layers “perpendicular” to the z axis):

p=Y pre 7 3)
k

where k = mqov, m is an integer, v is the normal of the layers and g9 = % with dy
being the layer spacing. Considering only slightly deformed smectic, the deformation
can be described by a displacement field u = uz that defines the displacement of
points: r — ' = r — u, where the point is at r prior to the deformation and at r’ after
the deformation. Thus, the density at r can expanded into series and to the lowest
order in u it reads

p=po+p1el e 04 4)

where the degeneracy parameter (phase) ¢ = qp - u has been introduced. When ¢
varies from [0,27] it describes all possible positions of the smectic phase (position
of the layer) with respect to reference smectic ¢ = 0. Therefore, the smectic order
parameter is a complex number
P = tpo €. ©)
When liquid crystalline sample is subjected to external fields (surfaces, electric
or magnetic field), the opposing orientational order can result in regions, where the
orientation of molecules in not defined. Such regions (in nematic they can be either
points or lines) are called defects and can only be described by the order parameter
tensor, since n is not defined and also S = 0 in that regions [8].



3 Free energy

3.1 Crystalline solids

First the construction of the free energy for crystalline solids is presented. Small
deformations of solids (i.e. in linear theory of elasticity) can be described by the
symmetric strain tensor v [11]

1 avi 8vk

Uik:z(ax,fax)’ (6)
where v = 1’ —r is the displacement vector of the point that was at r prior to the

deformation and at r’ after applying stresses.
Upon isothermal compression the free energy of a body increases. Free energy is
a scalar and can be thus constructed from the scalar invariants of a strain tensor. Free
energy is expanded in the Taylor series around the equilibrium value F(. Terms linear
in vj;, are equal to zero, since at equilibrium (no strain) the free energy is minimal. In

linear theory of elasticity, one keeps only the lowest terms - scalar invariants quadratic
in strain tensor

1
F=Fo+ EAiklmUikvlmz (7)

where Ay, are elastic constants. The tensor A is called the elastic moduli tensor and
is of rank four. Its properties arise from the strain tensor (v;x = vy;) and the harmonic
expansion of F (VixU1, = Uy 0ik)

Aikim = Aikml = Akitm = Aimik- 8)

Therefore it has only 21 independent components.
In crystals due to their intrinsic symmetry the number of independent elastic con-
stants is reduced as can be seen in Table 1.

crystal system | symmetry of the system || No. of independent elastic constants
Triclinic C; 21
Monoclinic Cs 13
Orthorhombic Cop 9
Tetragonal Cy 7
Rhombohedral GCs 7
Hexagonal Ce 5
Cubic Oy, 3

Table 1: Number of independent elastic constants in different crystal systems [11].



3.2 Uniaxial nematics and cholesterics — director picture

Nematic liquid crystals are somehow similar to classic solids [9], since any deforma-
tions (of the director field) are penalised by the increase in the free energy. Here the
deformations are not changes of the position of neighbouring points as in solids, but
are the changes in the orientation between two neighbouring points. The generalised
forces created by the deformation are proportional to curvature strains of the director
tield, which is an equivalent to Hooke’s law in solids [9]. That is why a similar concept
in the construction of the free energy is used: it is expanded around the uniform state
in the derivatives of the director field (in solids derivatives of the displacement vector
are usually used).

The characteristic dimensions of the deformations are large compared to molecular
dimensions, and thus the spatial derivatives of the director d;n; are small quantities.
It usually suffices that only first and second order terms in the expansion of the free
energy density are retained and it can be thus written as [9]

f=fo+ ]~<1L1‘]‘ aiTl]' + iCZLijkl (aﬂ’l]') (okny) + ]Nc3Lijk aiajnk +..., 9)

where fj is the free energy density of the uniformly aligned state, k, are some positive
elastic constants and indices {i, ], k,1} represent cartesian coordinates {x,y,z}. The
total free energy is obtained by integrating over the volume of LC

F= / Fav. (10)

The tensors L;;, Lijy and L;j have to be composed of all possible invariants onstructed
with the director n;, Kronecker delta function J;; and Levi-Civita tensor ¢; that are
allowed by symmetry. The terms (L;; d;n; ...) have to be invariant since the free energy
density does not change under symmetry operations.

In uniaxial nematics the centres of gravity of the molecules have no long-range
order, just like in ordinary liquids. Therefore its symmetry group must consist of
various rotations and reflections — the symmetry group is a point group [8, 12]. Yet,
there exists orientational order, as molecules tend to be parallel to some direction,
which is labelled by n. The direction of n is arbitrary in space and once the direction
is chosen, the symmetry breaks. However, in practice, the direction of n is imposed
by external constraints (surfaces, electric or magnetic field). The states n and —n
are equivalent and this direction generates the axis of rotation. The point group that
describes a nematic liquid crystal is the Dy, which has an axis of rotations in the
direction of n, a mirror plane perpendicular to n and a two fold axis in the mirror
plane. On the other hand, cholesteric liquid crystals are made of chiral molecules
(different from their mirror picture) and the director undergoes helical distrortion.
Hence, there is also n <+ —n symmetry but no mirror plane and the point group is
Do [12].

All the terms in the free energy density of a nematic and cholesteric LC have to
be invariant under the transformations from groups D, and D, respectively. The
possible invariants of second, third and fourth order are presented in the Tables 2, 3
and 4. The terms that are allowed in the free energy density have to obey the symmetry
properties (equality n <> —n and inversion symmetry r <+ —r [in nematics only]).



All possible invariants of the lowest order (L;;) are shown in Table 2. In the nematic

(Lij (nematic

there is no linear term in gradients of the director ) = 0), since L;; = ¢;; gives

the term
Li]‘aﬂ’l]' = (si]'aﬂ’l]' = aﬂ’l,' (11)

that is changes the sign after symmetry operations:

n— —nm : aﬂ’li — ai (—7’1,‘)
r— —1r 8ini — —aﬂ’li.

and the term with L;; = n;n; is zero
Lijoinj = ninjon; = nd; (njnj) =0, since n;n; = 1. (12)

However, in the cholesteric liquid crystal L;; = &;jxn gives the term n - (V x n) that is
allowed by symmetry:

n— —m : si]-knkainj — Eijk (—le) ai (—Tl]') = si]-knkainj
r— —r 8l‘jk1’lkai1’l]' — EijkNk (—ai) nj = —Eijkl’lkain]',

since in cholesterics there is no mirror plane. Other combinations of n, J_ and ¢ _ give
either zero or can be expressed as other invariants.

invariant | n - —n | r — —r allowed:
5ij - — X
nin; — — X, and also zero
EijkNk + — only in cholesterics

Table 2: The invariants of the lowest order. Other possible invariants either give zero (e.g. nin;(d;n;) =
niai(n]-nj) =0, since (n]-nj) = 1) or consist of these invariants (gijk €p = 0ibjp+...). The change
in the sign after symmetry operation is denoted by “—" and no change is denoted by “+".

The third order invariants are presented in Table 3. Here the first term is allowed
by symmetry but is zero since the director is a unit vector. The terms with 6 are
related through “surface terms”:

(5Z-kn]~ a,‘aji’li = nja]'a,‘nl' = a] (Tl]'a,‘nl') - aﬂl,‘a]‘n]' ’ (13)

since by using the Gaussian theorem ([ 9;[...] dV = ¢[...]; dS;) the divergence terms
can be understood as surface contributions and thus neglected for bulk free energy
density.

The fourth order invariants are presented in the Table 4. All fourth order invariants
are allowed in nematics and cholesterics, however, the second and third invariant from
the Table 4 are related through “surface terms”:

(alnl)(ajn]) = (aﬂ’l])(a]?’ll) + al' (niaji’l]' — Tl]'a]'nl') . (14)



invariant | n - —n | r — —r allowed:
ninjng + + v/, but zero [see Eq. (12)]
Eijk - + X
dij g + + v
ik j + + v
Ojk 1 + + v

Table 3: The invariants of the third order. Here also the change in the sign after symmetry operation is
denoted by “—" and no change by “+".

invariant || n -+ —n | r = —r || allowed:
dij Okl + + v
dik Oj1 + + v
di1 Ok + + v
;i ng 61 + + v

Table 4: The invariants of the fourth order. Here also the change in the sign after symmetry operation
is denoted by “—" and no change by “+".

Therefore, we are left with four different terms that can be expressed as only three
independent terms:

@m;) (9n) = (V-n)*, (15)
(9m;) @m;) = (V-n)’+(n-Vxn)’+(nxVxn), (16)

nin; (aink) (a]nk> = (1’1 x V X 1’1)2 , (17)
Si]'ki’lkain]‘ = n- (V X n) . (18)

By grouping invariants in this way, the well known Frank-Oseen free energy density
is obtained [13]:

f=fo+k(V-n) 4k (n-Vxn—g)?+ks(nxVxn)?, (19)

where ki, k; and k3 are elastic constants for different director deformations: splay,
twist and bend, respectively (see Fig. 2). The constant gy is the cholesteric pitch (i.e.
length at which the director turns for 277) and vanishes in the nematic. All these elastic
constants k; can be measured in the experiments [8].



Figure 2: Three basic deformation modes for the director field: (a) splay, (b) twist and (c) bend.

3.3 Nematics - tensorial approach

When describing samples with spatially varying nematic order parameter S = S(r) the
tensorial order parameter Q;; [see Eq. (2)] is needed. Also in the tensorial approach,
the spatial derivatives are assumed to be small and the free energy density is expanded
into series over invariant terms of Q;; and 9;Q;;.

3.3.1 Construction of invariants

Finding invariants of the tensors is more demanding and the group theory is of great
help. One of the possible ways is to look at the symmetric and traceless tensors
Q;j and vectors 9;Q;; as the representations of the rotation group SO(3) with L = 2
and L = 1, respectively [14, 15, 16]. The same procedure can also be applied in the
director picture as it is done in ref. [17]. To do this, the tensorial order parameter Q;;
is transformed from cartesian to spherical representation (L is actually the “angular

momentum”), since all the components P,%L) are then independent [14]:

1
Q) = —5 (Qu—Qu*2iQu), (20)
QY = +(Qu*iQy), (21)
OF = - (Qu+Qu), @)
Al = :F\k (Ac+ A,), (23)
Al = A, (24)

When constructing the invariants, actually the components P,Sfll) and S,(,g) of the
two spherical tensors of the ranks /; and I, are multiplied, or in other words: the
direct product group P ® S of the rank (2I; +1)(2l + 1) is created, which is then
reducible. The irreducible components are formed by linear combinations weighted
by Clebsch-Gordan coefficients C

Pos)\) = Y C(hbLimmaM)PhY s\2), (25)

Iy,lp,mq,my



The linear combinations of the direct product group P ® S transform according to the
representation T(), where L € {h+1h,h+1h—1,...,|I1 —b|}. For the free energy
density one is interested only in scalar invariants, which transform according to the
identity representation (L = 0).

The combinations of Clebsch-Gordan coupled invariants are linearly independent.
Due to surface relations [see, e.g. Egs. (13) and (14)] certain invariants become linearly
dependent. Thus, all the linearly independent scalar invariants have to be found,
in order to minimise the number of elastic constants. This is often done by using
computer programs for algebraic manipulation (e.g. Mathematica) [14].

3.3.2 Free energy

By following the before mentioned procedure, all the invariants to the arbitrary order
can be constructed. Since this is calculation is quite lengthy and demanding, we will
just take the results from Refs. [14] and [15].

The non-zero scalar invariant terms to the fourth order in tensor Q;; are Q;;Q;j,

QijQjxQxi and (QijQ,-]-)z. They give the Landau free energy for the phase transitions
fr:
1 1 1 2

fo= EA(T)QijQij + gBQiijkai +4€ (QijQi)", (26)
where A(T),B and C are material parameters. The temperature dependence is left
only in the parameter A, since this is the easiest case. In that way, the phase transition
from isotropic to nematic mesophase and the temperature dependence of the scalar
order parameter can be modelled.

The elastic contribution to free energy is usually composed [8] of the invariants
of the second order (9;Q;j0xQ;; and 9;Q;jdxQjx) and only one invariant of the third
order (e.g. Q;j9;Q 9jQu), since this is enough to get the Frank-Oseen free energy in
the limit of constant nematic order parameter S = Sp. All other allowed invariants of
third order are [15]:

Qij0kQij01 Qui Qij01Qik91Qjk ,
Qij0jQik91Qxi , Qij01Qik9;Qxi ,
Qij0kQikdiQj -
As a result, the common expression for the elastic part of the free energy density
reads 9Q;0Q; 1. 9Q4aQu 1. . 3QudQ
fe = %Ll ax: ax: + ELZ ax;-] ax;k + ELaQij axlid le' 27)

where L1, L, and L3 are elastic constants and can be obtained from comparison with
the director form of the free energy. This form of free energy is still of second order
in derivatives of the order parameter, same as the Frank-Oseen free energy [Eq. (19)],
however the last term in Eq. (27) is of third order in the order parameter Q.

3.3.3 Comparison with director representation

The elastic free energy fr can be rewritten in the terms of the director field n when
nematic order parameter is spatially constant S = Sy. By using Eq. (2) and conditions

10



nin; = 1 and n;0;n; = 0 the terms in f; [Eq. (27)] can be expressed by the spatial
derivatives of the director field. Thus the standard Frank-Oseen form of the free
energy [Eq. (19)] and the relations between the elastic constants are obtained [18]:

ks + 2ky — ky
L, = otie-b
955
L, - 4(ky —Zkz) ,
955
Ly — 2(k3 —3k1)
9S;

3.4 Smectics A

The molecules in smectics A are in layers (typically one to few molecules thick) and
inside each layer the centres of gravity of molecules have no long-range order — each
layer is a two-dimensional liquid. The normal of the layers defines the preferred direc-
tion of molecules (usually z axis) and here also the directions z and —z are equivalent.
This direction defines the axis of complete rotation. The properties of smectics A lead
to symmetry group De. It is different from the nematic group Dy, in that it accepts
the chirality [8].

Similarly to the nematics, any deformations of smectic layers increase free energy.
Small deformations of the layers can be described by the displacement field u [see
Egs. (4) and (5)] and as free energy is not changed by uniform translations, only
gradients of displacement field can enter the free energy. Furthermore, there are no
linear terms, since at equilibrium the free energy has to be minimal [8].

Physically, the assumption of gradients u being small means that the smectic layers
are neither very much tilted from the x,y plane nor strongly compressed. At each
point the director n is normal to the layers and can be written as

n = (ng,mny,1), nx:—g—z<<1, ny:—g;<<1. (28)
This has the interesting consequence that n-V x n = 0 [see Eq. (19)] and thus the
twist deformation is forbidden in smectics.

The free energy can be constructed from invariant terms of the order parameter u.
They are obtained by the variation of u

1
Su = Vudr+ 2 (61 VVu) - br + O(sr®), (29)
which can also be written as the sum of following bulk terms [8]:

1. [(%) 52}: compression of layers.

2. [(?:712‘) 522]: rate of change of compression along the z axis. Allowed, but in
practice dominated by Term 1 and will thus be neglected.

3. [ny - dr, ], where dr, = (dx,0y,0): tilt of the layers. Not allowed since it is not
rotationally invariant.

11



4. [(32715 + g%’) x| -5x4: the splay term (V - V| u).
5. [aza;% - 0z0x l]: The bend term. Can be expressed by surface terms and terms 2
and 4.

The invariants are obtained by the scalar squares of the allowed terms. To the
lowest order in gradients u the free energy reads

B fou\®> K [Pu u\’
Ferey () 47 (et o) 0
The same expression for the smectic free energy [Eq. (30)] can be obtained from
the free energy for nematics by expressing the director as n = (‘%f —g—;, O> [10].

4 Conclusions

The construction of the free energy density for the liquid crystals was presented.
The idea is similar to the one in the theory of elasticity for solids, as free energy
is composed of invariants of the “relevant” quantities [relevant depends on the choice
of the variables on which free energy is dependant, e.g. F = F(uj) in solids or
F = F(n, ainj) in nematic]. For the free energy density in the director representation
a more “brute force” method was applied, and it was shown that (tensorial) invariants
can be constructed with group theory.

Similarly, the free energy for smectic mesophases in the tensorial representation
can be constructed, but due to another type of ordering (1D positional order) one
more order parameter is needed that describes the layered structure. The free energy is
then similarly expanded into invariant terms of all order parameters and their spatial
derivatives [19].

The free energy (density) can be expanded up to an arbitrary order and so higher
order invariants are needed. By doing this a more exact description could be obtained.
In most cases no experimental or even theoretical data is available for elastic constants
and also the numerical calculations become greatly complicated. Therefore, usually
the lowest possible order invariants that give reasonable agreement to experiments are
used. In modelling, the free energy is then minimised, which yields Euler-Lagrange
equations and the equilibrium structure can be calculated.

The great benefit of the tensorial picture is that the defects can be modelled, which
is at least very difficult if not impossible in the director picture. However, since the
dimensions of the defects introduce a length scale, the results can no longer be scaled,
as it is possible in the director picture.
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