Physics of soft matter 2019/20

week	lectures	tutorials
1	 Introduction. Phenomena and features of soft matter. Interparticle forces, Viscoelastic response, microscopic interpretation of elasticity and viscosity. Generalized susceptibility. 	1. 10. (lectures)
2	 Liquid state I. Equilibrium themodynamics, ideal and excess quantities. <i>n</i>-particle densities and <i>n</i>-particle distribution functions. Radial distribution function. YBG hierarchy. Distribution function theories, Ornstein-Zernike equation. Virial expansion. 	8. 10. <i>(lectures)</i>
3	 Liquid state II. Hard-sphere equation of state: Carnahan- Starling equations of state. Perturbation theories: λ- expansion, van der Waals equation of state. 	15. 10. • Kelvin-Voigt and Maxwell model of viscoelastic media (TP)
4	 Liquid crystals I. Onsager theory. Elastic theory of nematics: Director, Frank elastic energy, splay, twist and bend deformations. 	 21. 10. • Third virial coefficient for hard spheres (TŽ) • Thermodynamic inconsistency (ML) • Derivation of Ornstein-Zernike equation* • Closures of Ornstein-Zernike equation (MO)
5	 Liquid crystals II. Surface anchoring: Extrapolation length; twisted cell. Nematic in magnetic field. Line defects: classification, strength, energy, stability. 	 28. 10. • Maier-Saupe theory of isotropic-nematic phase transition • Hybrid nematic cell (ŽF) • Nematic liquid crystal in a capillary: escaped vs. planar radial structure (NK)
6	5. 11. <i>(tutorials)</i>	 5. 11. • Anchoring of liquid crystal at grooved substrate (BM) • Frederiks transition (KK)
7	12. 11 Liquid crystals III. Tensorial nematic order parameter. Landau-de Gennes theory of nematic-isotropic transition. Smectic elasticity: Order parameter, layer compression and bending.	 12. 11 • Landau-de Gennes theory of nematic-isotropic transition (TK) • Blue phases (TK)
8	 19. 11. Polymers I. Single polymer chain: Freely jointed chain, radius of gryation, entropic elasticity. Persistence length. Expanded coil. Coil-globule transition. 	 19. 11. • Path integral formalism for polymers (RK) End-to-end distance in worm-like chain (PA) Elongation on force in freely-jointed chain model
9	 Polymers II. Polymer solutions: dilute, semidilute, and concentrated solutions, osmotic pressure; des Cloizeaux formula. Dynamical models: Rouse modes, reptation. 	 26. 11. • Adsorption of a single chain (JG) • Problems with Flory theory (JZ) • Scaling theory of confined polymers: between two walls, in a cylindrical capillary (AK)
10	3. 12. Polymers III. Gels: Flory-Stockmayer theory. Rubber.	3. 12. • Rubber elasticity & Mooney-Rivlin model (AP)
11	 10. 12. Colloids I. Classification, characteristic energies. Brownian motion: Einstein-Stokes relation. van der Waals forces: nonretarded and retarded interaction; Casimir interaction. 	 10. 12. • Derjaguin approximation (ML) • Hydrodynamic interaction between two spheres (MR)
12	 Colloids II. Electrostatic interaction: screening, Poisson- Boltzmann equation, Debye-Hueckel approximation, force between like-charge plates. Depletion interaction. Derjaguin-Landau-Verwey-Overbeek theory. Aggregation and stabilization of colloids. Phase diagram of hard spheres. 	 17. 12. Interacting charged surfaces on the Poisson-Boltzmann level (AH) Interacting charged surfaces at fixed electrostatic potential (KT) Manning condensation Diffusion-limited aggregation (TŽ)
13	24. 12. TBA	24. 12. TBA
14	31. 12. TBA	31. 12. TBA
15	concentration. Spherical micelles; cylindrical micelles: distribution of micelle size; bilayers.	 Complex amphiphile/diblock copolymer morphologies: perforated lamellar, sponge, gyroid phases
16	 Amphiphiles II. Theory of membrane elasticity: bending and stretching moduli. Vesicles: reduced volume, ADE theory, vesicle shapes. 	 14. 1. • Persistence length of a bilayer membrane • Helfrich free energy & undulation forces • Plastic deformation of a 2D foam