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Foreword

These notes were prepared for the one-semester course in theoretical physics
of soft condensed matter physics for master students at the Department
of Physics, University of Ljubljana. The course consists of 30 hours of
lectures and 15 hours of tutorials/seminar. The aim of the course is to
provide a broad review the phenomena and the concepts characteristic of
soft matter. Each chapter contains a selection of the ideas associated with a
given topic — a more comprehensive and in-depth discussion would not fit
in the curriculum, and many important questions had to be skipped. The
course builds on the standard equilibrium thermodynamics and statistical
mechanics as well as on classical elasticity, and the student is expected to
have mastered advanced undergraduate courses in these fields.

The notes rely on the material presented in the textbooks listed at the
end. I tried to stick to the notation used in these textbooks as much as
possible. Chapter 1 (1 week) is based on Ref. [1], chapters 1 and 2 and on
Ref. [2], chapter 5; chapter 2 (2 weeks) on Ref. [3], chapters 1-6; chapter 3 (3
weeks) on Ref. [1], chapter 7, on Ref. [15], chapters 2, 3, and 4, on Ref. [16],
chapters 6 and 9 [16]; chapter 4 (3 weeks) on Ref. [1], chapter 5, on Ref. [2],
chapters 2 and 3, and on Ref. [17], chapter 2; chapter 5 (2 weeks) on Ref. [1],
chapter 4; chapter 6 (2 weeks) on Ref. [1], chapter 9 and on Refs. [25] and
[26].

The lecture notes are intended as a map of the topics covered and it is
advisable to consult the original textbooks as much as possible. The bibliog-
raphy contains some uncited references, which may serve as supplementary
resources. Also included is a list of homework problems.

I will appreciate any comments and suggestions as well as corrections of
errors of any kind. The basic sections and subsections marked by asterisks. I
thank G. Kahl (Technische Universität Wien) for many helpful suggestions,
and T. Dobravec, D. Grošelj, A. Horvat, B. Kavčič, J. Lapajne, J. Mur, G.
Posnjak, and K. Vozel for corrections.

Primož Ziherl
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Chapter 1

Introduction

Soft matter is a broad term used to refer to materials that are in between
the atomic or molecular crystals on one hand and gasses and simple liquids
on the other. Soft materials typically contain more than one component
(e.g., colloids are micrometer-size particles dispersed in solvent) and they
are characterized by mechanical response much softer and much slower than
ordinary solids. This gives rise to behavior not encountered in, e.g., crystals.

The distinctive features of soft matter are [1]

• Lengthscale Soft materials are based on macro- or supramolecular
entities such as polymers, and colloids. Their size is much larger than
the size of a single atom and usually smaller than 1 µm. This means
that the details of the interatomic interaction are not very important,
coarse-grained interactions are more convenient.

• Universality Many aspects of interactions and structures in soft mat-
ter does not depend on the specific chemistry but on more general
properties. For example, the radius of gyration of polymers does not
depend on the chemistry of the monomers but only on the degree of
polymerization. It is the linear architecture of polymers that mat-
ters. The same applies to membranes. Irrespective of the type of
amphiphiles, the elasticity of the bilayer membrane is of the same
type in all amphiphiles.

• Fluctuations Typical energy scales in soft matter are comparable to
thermal energy, which means that the objects are subject to thermal
fluctuations. The polymer chain invariably fluctuates in time. They
also execute Brownian motion — e.g., colloids are much larger than
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8 CHAPTER 1. INTRODUCTION

atoms but still too small to sediment. As a result, they move in space
in a random fashion due to collisions with the molecules of the solvent.

• Rheology Many soft-matter fluids are marked by a viscosity much
larger than that of simple liquids. In addition, they show viscoelastic
behavior which is directly related to the size of particles dispersed in
the solvent. This gives rise to non-Newtonian behavior.

• Polydispersity Most soft-matter systems are not monodisperse. In
polymers, there is always a distribution of degrees of polymerization.
In colloidal dispersions, not all particles are the same size, which affects
its propensity to crystallize. In this respect, colloidal crystals are very
different from atomic crystals. Polydispersity is an inherent property
of soft matter.

• Scaling Many properties of polymers depend mostly on the number
of monomers N , i.e., the degree of polymerization. One is typically
interested in how do these properties scale with N rather than on the
exact numerical predictions.

• Self-assembly or self-organization Crucial in soft matter is the
presence of the solvent, and the interaction with the solvent as well as
interactions mediated by the solvent often drive the particles to self-
assemble in various ways. Amphiphilic molecules form bilayer mem-
branes or micelles such that the hydrophobic tails are not in contact
with water, and these membranes may assume a range of shapes them-
selves. Depending on concentration, diblock copolymer solutions may
form micelles, cylinders, lamellae, gyroids...

The various types of soft-matter materials are:

• Liquid crystals Formed of rod-like or plate-like molecules, liquid
crystals are viscous liquid characterized by orientational molecular or-
der. Their optical properties are similar to those seen in crystals (es-
pecially birefringence). There exist several types of LC phases, the
simplest type are nematics.

• Polymers are macromolecules of typically linear architecture. In so-
lution, they may form coils or globules. They may be adsorbed on
surfaces etc. There also exist more complex polymers — star poly-
mers, dendrimers etc.
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• Colloids are small µm-size particles dispersed in the continuous medium.
Prototype colloids are sols = dispersions of solid particles in a liquid.
Colloids can form crystals, colloidal glasses etc.

• Amphiphile self-assemblies In water, amphiphilic molecules ar-
range so that the hydrophilic head faces water and the hydrophobic
tail points away from water. This can give rise to bilayer membranes
and many other complex structures.

• Granular materials are similar to colloids but the particles are big-
ger so that the gravitational potential energy does matter. Thermal
motion is frozen, an interesting phenomenon are avalanches.

• Foams are colloids with gas bubbles dispersed in liquid. The bor-
der between bubbles are called Plateau borders and they satisfy the
Plateau rules.

As many of these materials consist of the solvent, some insight into the
theory of simple liquids is needed too.

Many of these types of order are seen in everyday life either in natural or
in man-made materials: honey, toothpaste, whipped egg white, mayonnaise,
rubber. . .

1.1 Interparticle forces in soft matter∗

The very existence of condensed phases (liquids and solids) witnesses to the
existence of attractive forces between the building blocks of matter. A liquid
film minimizes its surface area at constant volume so as to minimize the
fraction of exposed molecules at the surface which are bound less strongly
than the molecules in the bulk. On the other hand, condensed matter resists
compression so that at small separations, there exist repulsive intermolecular
forces. A typical force profile is shown in Fig. 1.1.

The microscopic origin of the short-range repulsion is the electron-electron
interaction and the Pauli exclusion principle. This is why the atoms cannot
penetrate one another, and this also applies to molecules (albeit in a more
complicated way because their conformation may change due to interaction
with neighbors). An often-used approximation for the short-range repulsion
is the hard-core potential.

There exist several types of long-range interactions in soft matter listed
below.
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Figure 1.1: Qualitative dependence of the intermolecular force on separa-
tion [1].

van der Waals force∗

These forces are due to the interaction of an instantaneous rather than
permanent dipole moment in a given neutral atom and an induced dipole
moment in another neutral atom, which necessarily points in a direction
such that the interaction is attractive. The van der Waals force between
atoms is given by

UvdW =
A

r6
. (1.1)

The r−6 dependence is characteristic of this force. Just like atoms, mi-
croscopic bodies also interact with one another with the van der Waals
interaction.

The van der Waals interaction is often referred to as the dispersion inter-
action. For molecules in contact, its magnitude is about 10−20 J i.e. similar
to kBT .

Electrostatic force∗

Most if not all soft-matter systems are solutions of some kind, and in such
an environment the basic Coulombic interaction

UC =
q1q2

4πε0r
(1.2)

is more complicated than in simple bodies. The reason for this is that we
are usually interested in the interaction between macromolecules or colloids
suspended in the solution with dissolved counterions. Unlike the interaction
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between bare charges, the interaction between these bodies is not pairwise
additive because it depends on the distribution of the counterions which in
turn depends on the location of the macromolecules. In addition, the coun-
terions screen the interaction so that it decays exponentially with distance.

An order of magnitude estimate of the electrostatic interaction between
ions in a crystal: q1 = q2 = e0, r = 0.1 nm gives 2.3× 10−18 J. This is much
more than kBT = 4× 10−21 J. But in solution the electrostatic interaction
is much weaker.

Covalent bonds∗

These bonds bind atoms into molecules, and are of the same order of mag-
nitude as the bare ion-ion electrostatic interaction, i.e., ∼ 10−18 J. They are
much stronger than kBT and essentially unaffected by thermal motion. The
same applies to metallic bonds.

Hydrogen bonds∗

Hydrogen bonds occur between the largely positively hydrogen atoms in
molecules (which are reduced to protons as the electron resides at other big-
ger atoms) and electronegative atoms in neighboring molecules. An typical
example is the bond between H and O atoms in water. Typical energies are
up to 6× 10−20 J, i.e., up to 10kBT .

Hydrophobic interaction∗

A foreign molecule or inclusion in water changes the local structure of water,
and the interaction of the perturbed regions around two nearby inclusions
leads to attraction between them. The detailed mechanism of hydrophobic
interaction is complicated and still not completely clear. The magnitude of
this interaction is ∼ 10−20 J.

1.2 Viscoelastic response∗

One of the hallmark features of soft matter is that the distinction between
solids and liquids is not as clear as in simple solids and simple liquids. To
understand these differences, we need to look into the solids and liquids in
more detail. Specifically, we must understand the workings of the response
to shear stress.
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Figure 1.2: Displacement upon an application of a step-like shear stress:
η = G(0)τ [1].

In simple condensed matter — crystals and simple liquids — the distinc-
tion between solids and liquids is very clear. In Hookean solids an applied
shear stress produces a shear strain, which is proportional to stress and in-
versely proportional to Young modulus. In Newtonian liquids an applied
shear stress produces flow proportional to stress and inversely proportional
to viscosity.

These two types of behavior are the limiting cases of a more general re-
sponse of materials to shear stress known as the viscoelasticity. For reasons
described below, it is characteristic of materials formed by large supramolec-
ular entities such as polymers. In viscoelastic materials the response qual-
itatively depends on the frequency or the time scale. At short times/high
frequencies, the material behaves as a solid whereas at long times/low fre-
quencies it flows as a liquid. The typical strain-time dependence is shown
in Fig. 1.2.

Apart from viscoelastic behavior, the effective viscosity of complex fluids
depends on strain rate (i.e., the shear velocity v/l). In Newtonian fluids it
is constant, whereas in shear-thinning fluids it decreases with strain rate.
Examples of shear-thinning fluids are paints. When applied with a brush,
the rate is high and the paint readily flows. Once on the wall, the rate is
small and the viscosity increases. On the other hand, shear-thickening fluids
become more resistant to flow at high strain rates. This is characteristic of
pastes of a large volume fraction of particles.
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Microscopic interpretation∗

The elastic modulus and the viscosity of materials can be qualitatively un-
derstood in terms of simple models. Let us consider uniaxial deformation
along z axis. In equilibrium, the particles are located in the minima of
the potential created by their neighbors and their energy can be expanded
around the equilibrium particle-particle distance a:

U(r) = U(a) +
1

2

d2U

dr2

∣∣∣∣
r=a

(r − a)2 + . . . (1.3)

The force on a particle is given by

F = −dU

dr
= − d2U

dr2

∣∣∣∣
r=a

(r − a). (1.4)

If we assume that the particles are arranged in a cubic lattice, the stress is
given by force per spring divided by area per cell a2. So the stress is

pzz =
F

a2
= − d2U

dr2

∣∣∣∣
r=a

(r − a)

a2
(1.5)

whereas the strain is

uzz =
r − a
a

. (1.6)

The Young modulus is thus

E =
pzz
uzz

=
1

a

d2U

dr2

∣∣∣∣
r=a

. (1.7)

To estimate the order of magnitude, we further assume that the potential
U can be written as

U(r) = εf(r/a), (1.8)

where ε is the depth of the potential at r = a and f is a function which has
a minimum at r = a, diverges at r → 0 and goes to 0 as r → ∞. In this
case, d2U/dr2

∣∣
r=a
≈ ε/a2 if we assume that f ′′(1) = 1 and so

E ≈ ε

a3
. (1.9)

Thus the Young modulus is given by the energy density. In soft matter, the
interparticle bonds are soft and that is why the elastic modulus is small.
More specifically, in an elemental solid ε ∼ 10−18 J (covalent bonds) and
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Figure 1.3: Cages in fluid state: Upon shear deformation, the local cage
around a given particle is deformed and particle rattles within it before
escaping to relax the stress [1].

a ∼ 10−10 m. This gives E ∼ 1012 N/m2. In a colloidal crystal ε ∼ 10−20 J
and a ∼ 10−6 m, which gives E ∼ 10−2 N/m2.

In a fluid state, applied stress increases the local energy density and
until the particles rearrange, the material sustains stress, i.e., it behaves as
a solid. In simple liquids, the rearrangement time is very short and the solid-
like behavior is not very prominent. In polymers and colloidal suspension,
the rearrangement time is much longer and the short-time elastic response
is readily seen.

Upon application of stress, particles caught in a cage formed by neighbors
try to jump out of the cage. The probability for escape can be estimated as
follows. The particles bounce between the neighbors with a certain freuqency
ν and the potential barrier for escape is of the same order but smaller than
ε (the depth of the potential minimum which is the heat of vaporization
per particle). The probability for escape per unit time (i.e., the inverse
relaxation time) is thus

1

τ
∼ ν exp

(
− ε

kBT

)
. (1.10)

Now the heat of vaporization per particle in small molecules is smaller than
in polymers, and ε enters the above equation in the exponential. This is why
the relaxation time in simple liquids is between 10−12 and 10−10 s whereas
in polymers it can be up to ms.
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Upon application of shear stress F/A

∆l

l
=

1

G

F

A
, (1.11)

where ∆l/l is the shear strain and G is the shear modulus.
The displacement of a viscoelastic material to step-function shear stress

consists of two parts: i) the initial step function due to the elastic response
and ii) the linear viscous response which kicks in after the relaxation time
τ . In the initial elastic regime the displacement does not depend on time
whereas in the viscous regime it increases linearly with time (Fig. 1.2). The
magnitude of the short-time displacement is inversely proportional to the
static shear modulus G(0) (and proportional to α′)

∆l

l
=

1

G(0)

F

A
, (1.12)

where ∆l/l is the shear strain and F/A is shear stress. In the viscous regime

v

l
=

1

η

F

A
, (1.13)

where η is the viscosity. By comparing the two regimes we find that

η = G(0)τ. (1.14)

Equation (1.10) suggests that

η =
G(0)

ν
exp

(
ε

kBT

)
(1.15)

This is called the Arrhenius behavior.

1.3 Generalized susceptibility

Let us describe the elastic and the viscous response of the system to the
generalized force ψ in terms of the generalized coordinate (deformation or
displacement) x [2]. The system is characterized by the primary response
function µ(t) which describes the displacement due to an instantaneous force
ψ(t) = ψ0δ(t):

x(t) = µ(t)ψ0. (1.16)

The typical response function is shown in Fig. 1.4. The delta function de-
scribes a solid where the displacement is gone as soon as the force ceases to
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Figure 1.4: Primary response function of a damped harmonic oscillator (a),
a liquid (b), a solid (c), and a simple relaxatory system (d) [2].

act. The Heaviside function describes a viscous body where the displace-
ment persists even after the force ceases to act. Real liquids are described
by a rounded step function, say 1 − exp(−t/τ) where τ is the relaxation
time. In relaxatory systems the displacement decays with time.

The response of the system to arbitrary force is then given by

x(t) =

∫ t

−∞
µ(t− t′)ψ(t′)dt′. (1.17)

This formula follows from

• Causality: The response depends on forces in the past so that the
upper limit of the integral is t.

• Superposition: Any time-dependent force can be written as a se-
quence of δ-functions of suitable amplitudes, and the total response
depends on all of them.

Consider the response to an oscillatory force

ψ(t) = ψ0 exp(iωt). (1.18)
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The displacement oscillates with the same frequency but is phase-shifted

x(t) = x0 exp(iωt) exp(−iφ). (1.19)

We substitute these formulas in Eq. (1.17):

x0 exp(iωt) exp(−iφ) =

∫ t

−∞
µ(t− t′)ψ0 exp(iωt′)dt′. (1.20)

Now we define the dynamic susceptibility by

α∗ =
displacement

force
=
x0 exp(−iφ)

ψ0
=

∫ t

−∞
µ(t− t′) exp

(
iω(t′ − t)

)
dt′.

(1.21)
By replacing t − t′ = t′′ we have α∗ =

∫∞
0 µ(t′′) exp (−iωt′′) dt′′. Since the

primary response function vanishes at t < 0, µ(t < 0) = 0, the lower limit
of the integral can be replaced by −∞. We find that

α∗ =

∫ ∞
−∞

µ(t′′) exp
(
−iωt′′

)
dt′′. (1.22)

Thus the dynamic susceptibility is the Fourier transform of the primary
response function. α∗ = α′ − iα′′ is a complex function and its real and
imaginary parts α′ and α′′ are not independent as they are related to the
same primary response function. They satisfy the Kramers-Kronig relations

α′(ω0) =
1

π
P

∫ ∞
−∞

α′′

ω − ω0
dω, (1.23)

α′′(ω0) = − 1

π
P

∫ ∞
−∞

α′

ω − ω0
dω. (1.24)

Let us look at two typical examples:

• Liquid: µ(t) = Θ(t), α∗ = πδ(ω) − i/ω. Imaginary susceptibility
is nonzero at all frequencies, losses prominent. Real susceptibility is
nonzero only at ω = 0 which corresponds to static force.

• Solid: µ(t) = δ(t), α∗ = 1. Imaginary susceptibility vanishes, no
losses.

Now we calculate the work done by an oscillatory force ψ(t) = ψ0 cos(ωt).
The displacement reads x(t) = α∗ψ(t) = (α′ − iα′′)ψ(t), its real part being

x(t) = α′ψ0 cosωt+ α′′ψ0 sinωt. (1.25)
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The power reads

dW

dt
= ψ

dx

dt
= ψ0 cosωt

(
−ωα′ψ0 sinωt+ ωα′′ψ0 cosωt

)
(1.26)

= −ψ
2
0

2
ωα′ sin 2ωt+ ψ2

0ωα
′′ cos2 ωt. (1.27)

The first term oscillates with time and its average over one cycle is 0 —
obviously it represents the energy which is stored in the system during the
first half-cycle and retrieved during the second half-cycle. Thus α′ is related
to the elastic response of the system.

The second term is qualitatively different, its time average being

dW

dt
=
ψ2
0

2
ωα′′ > 0. (1.28)

In an isothermal system, the internal energy is constant and from dU =
dW + dQ it follows that the work expended on the system dW > 0 and the
heat released into the thermostat dQ > 0 are proportional to α′′.



Chapter 2

Simple liquids

By themselves, simple liquids do not belong to soft matter. Yet many soft
materials either are liquids or are based on liquids, and thus some under-
standing of the liquid state is needed. In addition, the density of liquids
is very similar to the density of the solids, so that the molecules interact
strongly and the partition function cannot be evaluated exactly. Instead a
series expansion of the density and the distribution function are used — and
typically truncated at the pair level. The pair distribution at a given pair
interaction is determined by the first term in YBG hierarchy, leading to an
integrodifferential equation. Also used to determine g(r) is the Ornstein-
Zernike equation, and the equation of state and the thermodynamic poten-
tials are computed from the energy, the pressure, and the compressibility
equations. This usually leads to thermodynamic inconsistency due to the
various approximations made.

Here we will review some results presented in Hansen and McDonald’s
textbook [3].

Liouville equation∗

The liquid consists of N classical spinless particles and the Hamiltonian
reads

HN =
N∑
i=1

p2
i

2m
+ VN (r1, r2, . . . , rN ) +

N∑
i=1

Vext(ri). (2.1)

The first term is the kinetic energy, the second one describes the interparticle
interactions, and the last one is the external potential.

The statistical-mechanical system is described by the phase-space prob-
ability density f (N)(rN ,pN ; t). The time derivative of f must vanish as the

19
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probability density in phase space is conserved. f depends on time both
directly and indirectly so that

df

dt
=
∂f

∂t
+

N∑
i=1

(
∂f

∂ri
· dri

dt
+
∂f

∂pi
· dpi

dt

)
= 0. (2.2)

This is the Liouville equation. The Hamiltonian dynamics read

dri
dt

=
∂HN

∂pi
=

1

m
pi. (2.3)

and
dpi
dt

= −∂HN

∂ri
= Fi (2.4)

where Fi is the force on ith particle; to simplify the discussion, we set the
external potential to 0. Upon inserting these results in Eq. (2.2) we find

∂f

∂t
+

N∑
i=1

(
1

m

∂f

∂ri
· pi +

∂f

∂pi
· Fi

)
= 0. (2.5)

In equilibrium, ∂f/∂t = 0.

Partition function and configuration integral∗

The canonical partition function is

QN (V, T ) =
1

N !h3N

∫
exp

(
−βHN (rN ,pN )

)
drNdpN . (2.6)

Here V and T are volume and temperature, respectively, and rN and pN

are vectors of the positions and momenta of all particles. The Helmholtz
free energy is given by

F = −kBT lnQ(V, T ) (2.7)

and pressure and entropy follow from dF = −SdT − pdV :

p = −
(
∂F

∂V

)
T

(2.8)

and

S = −
(
∂F

∂T

)
V

. (2.9)
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In terms of the probability density exp
(
−βHN (rN ,pN )

)
/
(
N !h3N

)
, the in-

ternal energy U reads

U =
1

N !h3NQN (V, T )

∫
HN (rN ,pN ) exp

(
−βHN (rN ,pN )

)
drNdpN .

(2.10)
The kinetic part of the partition function can be integrated readily giving

QN (V, T ) =
1

N !Λ3N
ZN (V, T ), (2.11)

where

Λ =
h√

2πmkBT
(2.12)

is the thermal de Broglie wavelength and

ZN (V, T ) =

∫
exp

(
−βVN (rN )

)
drN (2.13)

is the configuration integral.
In ideal gas, VN (rN ) = 0 and ZN (V, T ) = V N so that the ideal free

energy is

F id = −kBT ln

(
V N

N !Λ3N

)
(2.14)

≈ −kBT (N lnV −N lnN +N − 3N ln Λ) (2.15)

= NkBT (ln ρ+ 3 ln Λ− 1) (2.16)

where we used the Stirling approximation lnN ! ≈ N lnN−N and ρ = N/V .
This readily gives the ideal-gas equation of state pV = NkBT .

Ideal and excess quantities∗

In a system of interacting particles,

QN (V, T ) = QidN (V, T )
ZN (V, T )

V N
(2.17)

and the free energy given by Eq. (2.7) naturally splits into the ideal and the
excess parts

F = F id + F ex, (2.18)

where

F ex = −kBT ln
ZN (V, T )

V N
. (2.19)
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In a similar way, we find that U = U id + U ex where U id = 3NkBT/2 and

U ex =
1

ZN (V, T )

∫
VN (rN ) exp

(
−βVN (rN )

)
drN = 〈VN 〉. (2.20)

Grand canonical ensemble

The grand-canonical partition function reads

Ξ(V, T ) =
∞∑
N=1

exp(Nβµ)

N !h3N

∫
exp

(
−βHN (rN ,pN )

)
drNdpN (2.21)

=

∞∑
N=1

exp(Nβµ)QN (V, T ) (2.22)

=
∞∑
N=1

zN

N !
ZN (V, T ), (2.23)

where z = exp(βµ)/Λ3 is the activity and µ is the chemical potential.
The chemical potential can be expressed in terms of derivatives of U,F,

and G:

µ =

(
∂U

∂N

)
V,S

=

(
∂F

∂N

)
V,T

=

(
∂G

∂N

)
p,T

. (2.24)

Like U and F , it can be split into the ideal and the excess part. Using
Eq. (2.19), the latter can be computed from

µex =

(
∂F ex

∂N

)
V,T

= F ex(N + 1, V, T )− F ex(N,V, T ) (2.25)

= −kBT ln

(
ZN+1(V, T )

V ZN (V, T )

)
. (2.26)

The potential energy of N+1 particles VN+1(r
N ) can be divided into VN (rN )

and φ
VN+1(r

N ) = VN (rN ) + φ, (2.27)

where φ is the interaction of (N + 1)th particle with all others. In a transla-
tionally invariant system rN+1 may be taken as the origin of the coordinate
system. Integrating over rN+1 gives a factor of V and we have

ZN+1(V, T )

ZN (V, T )
=
V
∫

exp
(
−βVN (rN )

)
exp(−βφ)drN∫

exp (−βVN (rN )) drN
= V 〈exp(−βφ)〉.

(2.28)
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Thus the excess chemical potential

µex = −kBT ln〈exp(−βφ)〉 (2.29)

is proportional to the logarithm of the mean Boltzmann factor of the test
particle inserted in a system of N particles.

2.1 Densities and distribution functions∗

The n-particle density is defined by

ρ
(n)
N (rn) =

N !

(N − n)!

1

N !h3NQN (V, T )

×
∫

exp
(
−βHN (rN ,pN )

)
dr(N−n)dpN (2.30)

=
N !

(N − n)!

1

ZN (V, T )

∫
exp

(
−βVN (rN )

)
dr(N−n). (2.31)

The normalization is such that∫
ρ
(n)
N (rn)drn =

N !

(N − n)!
. (2.32)

This gives ∫
ρ
(1)
N (r)dr = N (2.33)

and in a homogeneous system

ρ
(1)
N (r) =

N

V
= ρ. (2.34)

In ideal gas, VN (rN ) = 0 and ZN (V, T ) = V N so that Eq. (2.31) gives

ρ
(n)
N (rn) =

N !

(N − n)!

1

V n
=

N !

(N − n)!Nn
ρn. (2.35)

The first factor can be written as

N(N − 1) . . . (N − n+ 1)

Nn
=

(
1− 1

N

)
. . .

(
1− n− 1

N

)
∼ 1 +O

( n
N

)
(2.36)
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so that in ideal gas the pair density

ρ
(2)
N (r1, r2) = ρ2

(
1− 1

N

)
. (2.37)

In a real gas where the only term in the potential VN (rN ) that has not been
integrated out is the pair potential v(r1, r2) = v(r = |r1 − r2|) so that

ρ
(2)
N (r1, r2) = ρ2

(
1− 1

N

)
exp (−βv(r)) . (2.38)

The n-particle distribution function is defined by

g
(n)
N (rn) =

ρ
(n)
N (rn)∏n

i=1 ρ
(1)
N (ri)

(2.39)

and in a homogeneous system

g
(n)
N (rn) = ρ−nρ

(n)
N (rn). (2.40)

The most important distribution function is the pair distribution func-

tion g
(2)
N (r1, r2). In an isotropic and homogeneous system, g

(2)
N depends only

on r = |r1−r2| and is called the radial distribution function. From Eq. (2.38)
we have

g
(2)
N (r1, r2) = exp (−βv(r)) , (2.41)

where we have assumed that N � 1. For r much larger than the range
of interparticle potential, g(r) tends to 1. The typical radial distribution
function is shown in Fig. 2.1.

An especially important example is the hard-sphere fluid. The exact
radial distribution function can only be obtained numerically and the result
is shown in Fig. 2.2. As density is increased, the anticorrelation hole appears
after the nearest-neighbor peak and so do the second- and third-nearest
neighbor peaks.

2.2 YBG hierarchy

How do the distribution functions depend on the pair potential? This is
described by the Liouville equation [Eq. (2.5)]. In brief, the equilibrium
probability density f (N) is factorized — the momenta and the kinetic energy
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Figure 2.1: Radial distribution function in liquid argon [3].

Figure 2.2: Radial distribution function in hard spheres at various densities.
Monte-Carlo results.
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gives the standard Maxwell-Boltzmann distribution and ρN
(
rN
)

captures
the effect of interactions between the particles:

f (N)
(
rN ,pN

)
= ρ(N)

(
rN
)( β

2πm

)3N/2

exp

(
−β

N∑
i=1

p2
i /2m

)
. (2.42)

After this is inserted in the equilibrium Liouville equation, we obtain a
differential equation for ρ(N)

(
rN
)

which features the forces on each particle.
This force can be expressed in terms of forces of all other particles.

If the total density is expressed in terms of the distribution functions,
one obtains the Yvon-Born-Green (YBG) hierarchy of recursive integrodif-
ferential scheme which relate, e.g., g(n) and g(n+1). The derivation is rather
involved and we only list the first and the most important member of this
hierarchy which for a homogeneous liquid reads

∇1g(r12) = −β∇1v(r12)g(r12)− βρ
∫
∇1v(r13)g

(3)(r1, r2, r3)dr3. (2.43)

This is essentially the force equation for the liquid. In the superposition
approximation,

g(3)(r1, r2, r3) = g(r12)g(r13)g(r23) (2.44)

and upon dividing Eq. (2.43) by g(r12) and rearranging we have

∇1 [ln g(r12) + βv(r12)] = −βρ
∫
∇1v(r13)g(r13)g(r23)dr3. (2.45)

Finally, we note that in an isotropic fluid
∫
∇1v(r13)g(r13)dr3 = 0 so that

the right-hand side can be written as

∇1 [ln g(r12) + βv(r12)] = −βρ
∫
∇1v(r13)g(r13)h(r23)dr3, (2.46)

where h(r) = g(r) − 1 is the pair correlation function. By solving this
equation at a given pair potential we obtain the radial distribution function.

Here only the full series of distribution functions provides a complete
description. If the series is truncated and we only use the pair distribution
function we obtain inconsistent results. A way around this set is to define
the pair and the total correlation function. This leads to Ornstein-Zernike
equation.
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2.3 Energy, pressure, and compressibility

In a system of particles with pairwise interaction v(rij) the total potential
energy is

VN
(
rN
)

=
1

2

∑
i,j
i 6=j

v(rij). (2.47)

By recognizing that the average number of particles separated from the
reference particle by r is n(r)dr = 4πr2ρg(r)dr and that the potential energy
of the reference particle due to particles separated by r is v(r)n(r)dr, we
find that the excess internal energy reads

U ex = 2πNρ

∫ ∞
0

v(r)g(r)r2dr, (2.48)

where we took into account that the interaction of a pair of particles should
be counted only once. This is the energy equation and can also be obtained
in a more formal way [3].

The pressure equation is derived from the Clausius virial function

V
(
rN
)

=

N∑
i=1

ri · Fi, (2.49)

where Fi is the total force on particle i at ri. The time average of V
(
rN
)

is

〈V〉 = lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
i=1

ri · Fi (2.50)

= lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
i=1

ri ·mr̈i (2.51)

= − lim
τ→∞

1

τ

∫ τ

0
dτ

N∑
i=1

m |ṙi|2 (2.52)

= −3NkBT, (2.53)

where we integrated by parts and finally used the equipartition theorem:
The average value of twice the kinetic energy is 3NkBT .
V can be divided into the external part arising from the outside pressure

and the Vint due to the interaction between the particles. The former can
be computed by considering a cuboidal volume L3 exposed to hydrostatic
pressure p. The virial function is then the work done by the pressure within



28 CHAPTER 2. SIMPLE LIQUIDS

the liquid against the forces pA = pL2 along the x, y, and z axis. The cube
sides are displaced by L so that the work done is −3pAL = −3pV . By
substituting this results in V = Vint +Vext = Vint− 3pV into Eq. (2.53) and
dividing it by 3 we find

pV = NkBT +
1

3
〈Vint〉 = NkBT −

1

3

〈
N∑
i=1

ri · ∇iVN (rN )

〉
(2.54)

or

βp

ρ
= 1− β

3N

〈
N∑
i=1

ri · ∇iVN (rN )

〉
. (2.55)

This is the pressure or virial equation. Since all particles are equivalent,
the average contains N identical terms. The number of particles in a shell
of volume 4πr2dr at a certain r is 4πρg(r)r2dr, and each of these particles
contributes ri · ∇iVN (rN ) = rv′(r) where v′ = dv/dr. The result must be
multiplied by 1/2 so as to count each pair interaction only once. Thus we
have 〈

N∑
i=1

ri · ∇iVN (rN )

〉
= 2πNρ

∫
r3g(r)v′(r)dr. (2.56)

By inserting this in Eq. (2.55) we obtain

βp

ρ
= 1− 2πβρ

3

∫ ∞
0

v′(r)g(r)r3dr. (2.57)

For hard spheres, the pair interaction is infinite if r < σ and zero oth-
erwise. In this case the pressure equation cannot be used directly be-
cause its derivative cannot be computed. The way around is by intro-
ducing the so-called indirect correlation function y(r) = exp(βv(r))g(r)
so that v′(r)g(r) = −β−1y(r)d exp (−βv(r)) /dr. For hard-sphere v(r),
d exp (−βv(r)) /dr = δ(r − σ) and we have

βp

ρ
= 1 +

2πρ

3

∫ ∞
0

y(r)δ(r − σ)r3dr (2.58)

= 1 +
2πρ

3
σ3 lim

r→σ+
y(r) (2.59)

= 1 +
2πρ

3
σ3g(σ). (2.60)

The pressure of the hard-sphere liquid is determined by the value of the
radial distribution function at contact.
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In the grand-canonical potential, N is not fixed so that the normalization
of the n-particle densities [Eq. (2.32)] reads∫

ρ
(n)
N (rn)drn =

〈
N !

(N − n)!

〉
(2.61)

which gives ∫
ρ
(1)
N (r)dr = 〈N〉 (2.62)

and ∫
ρ
(2)
N (r(2))dr1dr2 = 〈N(N − 1)〉 =

〈
N2
〉
− 〈N〉 . (2.63)

In the grand-canonical formalism, compressibility is defined by

ρkBTχT =
〈N2〉 − 〈N〉2

〈N〉
. (2.64)

The right-hand side can be expressed in terms of Eqs. (2.62) and (2.63) to
give

ρkBTχT = 1 +
1

〈N〉

∫ [
ρ
(2)
N (r1, r2)− ρ(1)N (r1)ρ

(1)
N (r2)

]
dr1dr2. (2.65)

Now in a homogeneous system ρ(1) = ρ and ρ(2) = g(2)ρ2 [cf. Eq. (2.40)]
where g(2) depends only on r. Integrating over r1 gives V and V/〈N〉 can-
cels one of the ρ in the ρ2 present in both terms. The final result is the
compressibility equation of state

ρkBTχT = 1 + ρ

∫ [
g(2)(r)− 1

]
dr. (2.66)

If g(r) is exact, the energy, pressure, and compressibility equations of
state lead to the same results. Thus the derivation of the equation of state
from a given pair potential v(r) has been reduced to the search of the radial
distribution function g(r).

2.4 Distribution function theories

We first define the pair correlation function by

h(r) = g(r)− 1. (2.67)
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At small separations where g(r) virtually vanishes h(r) = −1 — this is the
anticorrelation hole. At the nearest-neighbor peak h(r) > 0 whereas at large
separations where g(r) = 1 and h(r) = 0. So the pair correlation function
makes sense.

The Ornstein-Zernike equation is derived by considering the response of
the liquid of particles interacting by v(r) to an external field. We skip the
derivation because the result is quite intuitive — the relation between the
total pair correlation function h(r) and the direct correlation function c(r)
reads

h(r) = c(r) + ρ

∫
c(|r− r′|)h(r′)dr′. (2.68)

This equation states that the total correlation function includes both direct
correlations and correlations mediated by all other particles located at r′

(Fig. 2.3). The probability of finding the other particles at r′ is proportional
to ρ, which is why it appears as a prefactor.

The effect of indirect correlations is best seen if the integral equation is
solved recursively:

h(r) = c(r)+ρ

∫
c(|r−r′|)c(r′)dr′+ρ2

∫
c(|r−r′|)c(|r′−r′′|)c(r′′)dr′dr′′+. . .

(2.69)

The Ornstein-Zernike equation provides a different perspective of the
pair correlations compared to the Yvon-Born equation. It can be considered
a defining equation for c(r) which is assumed to be related to the pair
potential in some simple way. The pair potential v(r) does not enter the
equation explicitly. The problem is that we have a single equation for two
unknown functions [h(r) and c(r)]. An additional closure relation is needed
to solve the system. Closure relations are obtained by approximating the
exact g(r) or c(r) using graph-theoretical or density-functional methods.
This leads to thermodynamic inconsistency: The equations of state derived
from the energy, pressure, and compressibility equations are not the same.

A complete theoretical derivation of the various approximations is be-
yond our scope. Here we merely list the main features and the results.

Mean-spherical approximation

This is the simplest approximation of all. We assume that the density is
small so that the second term in the Ornstein-Zernike equation is small
compared to the first one so that:

h(r) ≈ c(r). (2.70)
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Figure 2.3: Total correlation function h(r) and direct correlation c(r) [3].

Now h(r) = g(r) − 1 which can be approximated by exp(−βv(r)) − 1 ≈
−βv(r) if we assume that the pair interaction is weak. Thus

c(r) = −βv(r). (2.71)

Clearly this only makes sense if |βv(r)| � 1 otherwise g(r) may be negative
which is non-physical.

Percus-Yevick approximation

We rewrite the Ornstein-Zernike equation:

c(r) = h(r)− ρ
∫
c(|r− r′|)h(r′)dr′ = h(r)−hindirect(r) = g(r)− gindirect(r)

(2.72)
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where we have introduced the indirect total correlation function hindirect(r).
The indirect radial distribution function gindirect(r) can be expressed in
terms of the effective potential Φ(r). The effective potential defines the
radial distribution function g(r) and is introduced based on the notion that
at small densities, g(r) ≈ exp(−βv(r)) [Eq. (2.41)]. Thus we assume that
as the density is increased, the functional form remains the same but v(r)
is replaced by an effective potential. This implies that the indirect correla-
tion function is given by the difference between the effective and the pair
potentials:

gindirect(r) = exp (−β[Φ(r)− v(r)]) = g(r) exp (βv(r)) . (2.73)

After inserting this result into Eq. (2.72) we have

c(r) = g(r) [1− exp (βv(r))] . (2.74)

To lowest order, this is the same as Eq. (2.71) as g(r) ≈ exp(−βv(r)) ≈
1− βv(r).

Hypernetted chain approximation

If the pair potential v(r) is weak, the exponential in Eq. (2.73) can be
expanded gindirect(r) = exp (−β[Φ(r)− v(r)]) ≈ 1 − β[Φ(r) − v(r)] = 1 −
ln g(r) + βv(r) and

c(r) = g(r)− gindirect(r) = g(r)− 1 + ln g(r)− βv(r). (2.75)

To lowest order, this too is the same as Eq. (2.71) since g(r) ≈ 1− βv(r).

2.5 Virial expansion

The main assumption of the virial expansion is that the equation of state
can be written as a power series of the density. While this is reasonable at
small densities, the expansion becomes more and more impractical as the
density is increased.

The virial expansion reads

βp

ρ
= 1 +

∞∑
i=2

Bi(T )ρi−1, (2.76)
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where Bi are the virial coefficients. The derivation of the coefficients is
complicated but B2 can be obtained from the pressure equation of state
Eq. (2.57). By approximating g(r) by exp(−βv(r)) we have

βp

ρ
= 1− 2πβρ

3

∫ ∞
0

v′(r) exp(−βv(r))r3dr. (2.77)

The second term is now integrated by parts [r3 = u, −βv′ exp(−βv(r))dr =
dv] and we obtain

βp

ρ
= 1− 2πρ

∫ ∞
0

[exp(−βv(r))− 1] r2dr (2.78)

so that

B2(T ) = −1

2

∫
f(r)dr (2.79)

where f(r) = exp(−βv(r))− 1 is the Mayer function.

The other virial coefficients are defined by irreducible Mayer cluster in-
tegrals βi [3]. B3 represents triplets:

B3 = −1

3

∫
f(r)f(r′)f(|r− r′|)drdr′. (2.80)

2.6 Hard-sphere equation of state∗

This is a very important reference system because it accounts for the impen-
etrability of the molecules. The attractive interaction between the molecules
can be incorporated perturbatively as discussed in the next section.

For hard-sphere potential

v(r) =

{
∞ r < σ
0 r > σ

. (2.81)

The Percus-Yevick direct correlation function is [3]

c(r/σ) =

{
−λ1 − 6ηλ2r/σ − ηλ1(r/σ)3/2 r < σ
0 r > σ

, (2.82)

where

η =
πρσ3

6
(2.83)
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is the packing fraction whereas λ1 = (1 + 2η)2/(1 − η)3 and λ2 = −(1 +
η/2)2/(1−η)4. After inserting this into the compressibility equation we find

βp

ρ
=

1 + η + η2

(1− η)3
. (2.84)

On the other hand, inserting this into the pressure equation of state gives

βp

ρ
=

1 + 2η + 3η2

(1− η)3
. (2.85)

These two equations are not the same.

Carnahan-Starling equation of state∗

In hard spheres, the second virial coefficient B2 is trivial

B2 = −1

2

∫
f(r)dr = 2π

∫ σ

0
r2dr =

2πσ3

3
. (2.86)

The third virial coefficient B3 is less trivial (homework) and the result is:

B3 =
5π2σ6

18
. (2.87)

The fourth virial coefficient reads

B4 =

(
− 89

280
+

219
√

2

2240π
+

4131

2240π
arccos

1√
3

)
B2

2 = 0.28695B2
2 . (2.88)

B5, B6, and B7 were computed numerically.
Carnahan and Starling expressed the virial equation of state by replacing

ρ in the series expansion by η = πρσ3/6. The coefficients are rescaled too:

Bi =

(
6

πσ3

)i
Bi+1. (2.89)

This gives

βp

ρ
= 1 + 4η + 10η2 + 18.365η3 + 28.24η4 + 39.5η5 + 56.5η6 + . . . (2.90)

Then they noticed that if the rescaled coefficients are rounded to the 4, 10,
18, 28, 40, and 54, they can be expressed by a simple formula

Bi = i2 + 3i, (2.91)
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where i = 1, 2, 3, 4, 5, and 6. The advantage of this closed expression for the
coefficients is that if we assume that all Bi are given by this formula the
virial equation of state can be summed:

βp

ρ
= 1 +

∞∑
i=1

(i2 + 3i)ηi. (2.92)

The two terms are related to the second and the first derivative of the
geometric series and the final result is

βp

ρ
=

1 + η + η2 − η3

(1− η)3
. (2.93)

This equation of state agrees well with the numerical results at packing
fractions where the liquid is stable (Fig. 2.4).

Figure 2.4: Comparison of the Carnahan-Starling hard-sphere equation of
state (solid line) and the virial series including 2, 3,. . . 7 terms [3].
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2.7 Perturbation theories

In most cases the intermolecular potential consists of two fairly distinct
parts. The overlap of electron clouds leads to short-range repulsion whereas
the attraction is typically more long-ranged. The repulsive part of the poten-
tial is responsible for the structure of the liquid and the attraction provides
the cohesive background potential.

This splitting suggests that it is useful to consider splitting the inter-
molecular potential into a reference part (e.g., the hard-core potential) and
the remainder which is then treated as a perturbation. In the van der Waals
model, the excluded volume associated with each molecule of diameter σ is

Vexcl =
1

2

4πσ3

3
=

2πσ3

3
. (2.94)

The prefactor of 1/2 appears because the excluded volume can only make
sense in pairs of molecules, and the rest is the volume of a sphere of radius
σ around each molecule. If we replace V in the ideal-gas equation of state
by V − Vexcl it reads

βp

ρ
=

1

1− 4η
. (2.95)

This formula provides the correct B2 and simultaneously suggests that the
virial expansion may not make a lot of sense. On the other hand, the pressure
diverges at η = 1/4 which is way too low — in hard spheres, freezing begins
at η = 0.49.

In the λ-expansion, the potential is written as

vλ(r) = v0(r) + λw(r), (2.96)

where λ0 = 0 gives the reference potential v0(r) and λ1 = 1 gives the desired
potential. We assume that the total potential energy is given by a sum of
pair potentials

VN (λ) =
∑
i<j

vλ(rij). (2.97)

The derivative of the free energy with respect to λ reads

β
∂F

∂λ
=

1

ZN (λ)

∫
exp (−βVN (λ))βV ′N (λ)drN = β

〈
V ′N (λ)

〉
. (2.98)

where V ′N (λ) = ∂VN (λ)/∂λ. After this derivative is evaluated, we can inte-
grate it to calculate the free energy

βF (λ1) = βF (λ0) + β

∫ λ1

λ0

〈
V ′N (λ)

〉
dλ. (2.99)
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In the simplest case where the intermolecular potential is pairwise addi-
tive, the free energy per molecule reads

βF

N
=
βF0

N
+

β

2N

∫ 1

0
dλ

∫
ρ
(2)
λ (r1, r2)w(r1, r2)dr1dr2. (2.100)

The prefactor 1/2 in front of the integral is due to pair interaction. We have
replaced λ0 by 0 and λ1 by 1; F0 denotes F (λ = 0).

Now the pair density depends on λ but if it is replaced by ρ
(2)
λ=0(r1, r2)

we have

βF

N
=
βF0

N
+

β

2N

∫ 1

0
dλ

∫
ρ
(2)
λ=0(r1, r2)w(r1, r2)dr1dr2. (2.101)

Given that ρ
(2)
λ=0(r1, r2) = ρ2g0(r) and that the integration over dr1 gives V

as the system is homogeneous we have

βF

N
=

βF0

N
+

β

2N
ρ2V

∫ 1

0
dλ

∫
g(r)w(r)dr (2.102)

=
βF0

N
+
βρ

2

∫
g(r)w(r)dr. (2.103)

The integral over λ is trivial, and r is the position of particle 2 relative to
particle 1.

If the range of the pair potential is much longer than the distance at
which g(r) approaches the asymptotic value of 1 (which depends on density),
the remaining integral can be approximated by

βρ

2

∫
g(r)w(r)dr ≈ βρ

2

∫
w(r)dr = −βρa, (2.104)

where a is a constant and a > 0 for attractive pair interaction w(r).
Now we compute the equation of state. From

p = −
(
∂F

∂V

)
T

=
ρ2

N

(
∂F

∂ρ

)
T

(2.105)

and
βp

ρ
=
βρ

N

(
∂F

∂ρ

)
T

= ρ

(
∂(βF/N)

∂ρ

)
T

(2.106)

we have
βp

ρ
=
βp0
ρ
− βρa, (2.107)



38 CHAPTER 2. SIMPLE LIQUIDS

where
βp0
ρ

= ρ

(
∂(βF0/N)

∂ρ

)
T

(2.108)

is the equation of state of the reference state.
If the reference state is the hard-core liquid modeled by Eq. (2.95) and

if Eq. (2.95) is inserted in Eq. (2.107) we have

βp

ρ
=

1

1− 4η
− βρa. (2.109)

This can be rearranged to give

β
(
p+ aρ2

)
ρ

=
1

1− 4η
(2.110)(

p+ aρ2
) (
ρ−1 − 4η/ρ

)
= β−1. (2.111)

As η/ρ = πσ3/6, this result is of the well-known van der Waals equation of
state (

p+
ã

V 2
M

)
(VM − b) = RT, (2.112)

where ã = N2
Aa and b = 2πNAσ

3/3 are constants and VM = MV/m is the
kilomolar volume.



Chapter 3

Liquid crystals

The traditional division of states of matter into crystals of long-range 3D po-
sitional order (and perfect orientational order in case of molecular crystals)
and simple liquids with no long-range positional order barely scratches the
surface of the phenomenology of condensed matter. There exist a range of
mesophases characterized by various types of intermediate positional and/or
orientational order, and these mesophases are usually referred to as liquid
crystals. The term liquid crystals describes the liquid-like response to shear
(most liquid crystals flow like simple liquids) and their crystal-like optical
properties, especially birefringence.

Liquid crystals are materials based on anisotropic molecules. The molec-
ular anisotropy leads to orientational order described by a headless vector
called the director n, which specifies the average molecular orientation.
The most common types of liquid crystals are

• Nematics: Characterized by orientational order only and based on
elongated rod-like molecules, nematics are the most disordered liquid
crystals. Nematic order based on chiral molecules (which differ from
their mirror image much like the left and the right screw) is chiral
too; these phases are traditionally called cholesteric. In chiral nematic
phase, the director twists around a perpendicular axis and the pitch
is typically comparable to the wavelength of light (Fig. 3.1).

• Smectics: These phases are also found in rod-like molecules and have
a partial positional order in addition to the orientational order. The
molecules are arranged in layers which are 2D liquid. In smectic A
(Sm A) phase, the director is perpendicular to the layers whereas in
smectic C (Sm C) phase it is tilted with respect to layer normal. There
exist many subtypes of smectic phases which include chiral phases.

39
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• Columnar liquid crystals: These are typically found in plate-like
particles which are arranged in columns much like coins. There is no
long-range positional order within the columns but the particles are
orientationally ordered. In addition, there exists 2D positional order
of the columns.

Figure 3.1: Schematic of the simplest liquid-crystalline phases: Isotropic,
nematic, smectic, and columnar phase [1].

Most liquid crystal phases are found in organic molecules of suitable
shape. In these materials usually referred to as thermotropic liquid crystals
phase transitions are induced by temperature. Liquid-crystal order also
exists in anisotropic colloidal particles. Especially well-studied are liquid-
crystalline phases in tobacco mosaic and fd virus (Dogic and Fraden) and
in various kinds of clay particles (Lekkerkerker).

From the conceptual point of view, it is important to understand how
does the anisotropic shape of either molecules or colloids result in liquid-
crystalline order. The basic insight into the microscopic structure of liquid
crystals is provided by the Onsager theory of nematic-isotropic transition.
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3.1 Onsager theory

In the Onsager theory, one considers a system of hard rods of length L and
diameter D [1, 15]. The assumptions made are: i) the interaction between
the rods is steric; ii) the packing fraction η = (N/V )πLD2/4 = πLD2ρ/4 is
small, and iii) the aspect ratio of the rods is large, L/D � 1.

The free energy of a suspension of rods is constructed based on what we
know about ideal gases and gases of finite-size spheres. In ideal gases the
configuration integral is ZN (V, T ) = V N whereas in dilute finite-size spheres
ZN (V, T ) ≈ V N

free where Vfree = V −NVexcl is the free volume available to

the particles; here Vexcl = 2πσ3/3 is the excluded volume [Eq. (2.94)]. To
lowest order, the excess free energy of a gas of finite-size spheres reads

F ex = −kBT ln

(
ZN (V, T )

V N

)
= −kBT ln

(
1− NVexcl

V

)N
≈ NkBT

NVexcl
V

.

(3.1)
In hard rods, the combined positional ideal and excess free energy are

F = F id + F ex = −NkBT lnV +NkBT
NVexcl
V

. (3.2)

The appearance of orientational order gives rise to the dependence of the ex-
cluded volume Vexcl on the relative orientation of the particles. The excluded
volume of parallel rods is a cylinder of radius D and length L totaling to
πD2L (Fig. 3.2). For perpendicular rods, the excluded volume is a cylinder
of ellipsoidal base (Fig. 3.2). The excluded volume can be straightforwardly
calculated in the limit of large L/D. In this limit, the dominant contribution
comes from rods forming a Y or T shape (so that the tip of one rod bumps
into the other rod) where the center-to-center distance is of the order L/2
and the excluded volume of the crossed X shaped configurations where the
distance between the rod axes is D can be neglected. In this approximation,
the excluded volume consists of two rhombic prisms of height 2D and base
area L2| sin γ|/2 where γ is the angle between the long axes (Fig. 3.2). This
volume is to be divided by 2 so as to associate half of it to each particle.
The final excluded volume per particle is

Vexcl = DL2| sin γ|. (3.3)

If the orientation of the rods f(θ) is isotropic, the average | sin γ| = π/2.
The average value of | sin γ| is a functional of the orientational distribution
f(θ)

p[f(θ)] = 〈| sin γ|〉 =

∫
f(θ)f(θ′) sin γ dΩdΩ′, (3.4)
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where Ω and Ω′ describe the orientations of the two particles in space.

Figure 3.2: Onsager theory: rod-rod excluded volume [1].

Secondly, the orientational order decreases the entropy. Using the Gibbs
formula, we can express the entropy loss due to the anisotropic distribution
of rod orientations, and the corresponding excess free energy difference is

∆F ori = NkBT

∫
f(θ) ln (4πf(θ)) dΩ. (3.5)

Thus the total free energy reads

F = F id + F ex (3.6)

= NkBT

{
− lnV +DL2ρp[f(θ)] +

∫
f(θ) ln (4πf(θ)) dΩ

}
(3.7)

= NkBT

{
ln ρ+DL2ρp[f(θ)] +

∫
f(θ) ln (4πf(θ)) dΩ

}
+const. (3.8)

In terms of the packing fraction η = ρπLD2/4, DL2ρ reads Lη/D; η is also
used to rewrite ln ρ as ln(Lη/D)− ln(D/L) = ln(Lη/D) + const.′ This gives
the final form of the Onsager free energy

F = NkBT

{
ln
Lη

D
+

4

π

Lη

D
p[f(θ)] +

∫
f(θ) ln (4πf(θ)) dΩ

}
+ const.′′

(3.9)
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The only parameter of this theory is Lη/D.

We will solve the problem variationally using an ansatz for the orienta-
tional distribution f(θ). A reasonable normalized ansatz is

f(θ) =
α cosh(α cos θ)

4π sinhα
. (3.10)

The nematic phase corresponds to large α ∼ 20 where the distribution is
strongly peaked at θ = 0 and θ = π. For this particular choice of f(θ)
we can compute the degree of orientational order (often called the nematic
order parameter) defined by

S = 〈P2(cos θ)〉 (3.11)

=
1

2

∫
f(θ)(3 cos2 θ − 1)dΩ (3.12)

=
1

2

∫
f(θ)(3 cos2 θ − 1)2π sin θdθ, (3.13)

where P2(x) = (3x2−1)/2 is the Legendre polynomial of order 2. The result
is

S(α) = 1− 3
cothα

α
+

3

α2
. (3.14)

S is a monotonically increasing function of α, starting from 0 at α = 0 and
saturating at 1 for α → ∞. For α � 1, S ≈ α2/15 whereas for α � 1,
S ≈ 1− 3/α.

Using the ansatz Eq. (3.10) we can evaluate the average | sin γ| and plot
the Onsager free energy [Eq. (3.9)] vs. S for various Lη/D. As α and thus
S are increased, the orientational free energy NkBT

∫
f(θ) ln (4πf(θ)) dΩ

increases — the larger the order parameter, the more peaked the orienta-
tional distribution and the smaller the entropy. On the other hand, p[f(θ)]
tends to 0 as S goes to 1: If all molecules are parallel to each other, the
excluded volume is very small (zero in the limit L/D →∞). The weight of
the excluded-volume term is 4L/(πD) so that at vanishingly small L/D the
free energy is minimized by the isotropic state with S = 0 whereas at large
enough L/D there appears a minimum at a finite S.

The Onsager free energy is shown in Fig. 3.3. We see that for Lη/D <
3.34, free energy is minimal at S = 0 which corresponds to the isotropic
phase whereas for Lη/D > 4.49 the minimum is at a finite S > 0. For
Lη/D between these two values, isotropic phase coexists with a nematic
phase with S = 0.84.
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Figure 3.3: Onsager theory: Free energy as a function of S for Lη/D = 3.3
(isotropic phase) and Lη/D = 4.4 (nematic phase) [1].

Based on these results, we can plot the phase diagram in the (η, L/D)-
plane (Fig. 3.4). In the limit of very big packing fractions η → 1, nematic
phase is stable for L/D > 4.5.

In rods, the maximal achievable packing fraction is 0.907 and the packing
fraction of nematics is somewhat smaller than this but still of the same order
of magnitude. We can conclude that an aspect ratio of about 5 is sufficient
to stabilize the nematic phase in dense systems such as most molecular liquid
crystals. On the other hand, very long particles such as fd or tobacco mosaic
viruses form colloidal nematic phases at small packing fractions.

A more detailed insight into the role of particle shape can be obtained
using numerical simulations. In an analysis of hard spherocylinders [6],
nematic phase is found at L/D > 4.6. As far as the nematic-isotropic
transition is concerned, the phase diagram is consistent with the predictions
of the Onsager theory (Fig. 3.5; note that the x and y axes in this figure are
swapped compared to Fig. 3.4). Also present in the phase diagram are the
smectic and the crystalline phases.

An important lesson learned from the Onsager theory and from the nu-
merical studies of systems of anisotropic hard-core particles is that the aniso-
tropy of molecular shape alone is sufficient for the stabilization of the orien-
tationally ordered phases. This is also witnessed by the form of the Onsager
free energy [Eq. (3.9)] which is athermal: Temperature only enters as a pref-
actor, emphasizing that the origin of the orientational order is entropic. This
does not mean that the interactions between the liquid-crystalline molecules
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Figure 3.4: Phase diagram of the Onsager theory [1].

or colloids is entirely hard-core; but the steric repulsion between them is the
reference interaction.

3.2 Nematic elasticity∗

The advantage of statistical-mechanical theories such as the Onsager theory
is that they provide an insight into the workings of the liquid-crystalline
order. In most liquid-crystalline samples and applications, the order is spa-
tially modulated rather than uniform like in a well-ordered bulk sample. The
modulations may be imposed by external forces such as aligning surfaces.
To describe the spatially distorted order, one needs to introduce an elastic
theory associated to a suitable order parameter.

The most obvious order parameter is the nematic director n and the most
widely used theory of elasticity is due to Frank [15]. In the Frank theory,
we consider spatial distortions of the director n(r). These distortions are
very gradual so that L∇n� 1 where L is the length of the molecules. The
assumptions made are the following:

i) the distortion free energy per unit volume fd can be expanded in pow-
ers of ∇n so that in a uniform nematic fd vanishes;
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Figure 3.5: Phase diagram of hard spherocylinders [6]. L + D and D are
the spherodylinder length and diameter, respectively, so that L/D+1 is the
aspect ratio.

ii) fd is even in n because n and −n are indistinguishable;

iii) fd does not contain terms linear in ∇n — the only two terms of this
type allowed are ∇·n (which changes sign as n is replaced by −n and
is thus forbidden) and n · ∇ × n (which changes sign for r→ −r and
is thus forbidded in materials with center of symmetry);

iv) there are no terms of the form ∇u where u is an arbitrary vector
(because these terms can be transformed into surface integrals).

The derivation of all terms allowed by symmetry is somewhat involved;
the result is

fd =
K11

2
(∇ · n)2 +

K22

2
(n · ∇ × n)2 +

K33

2
(n×∇× n)2 . (3.15)

The three terms represent the splay, twist, and bend deformation, respec-
tively (Fig. 3.6), whereas K11,K22, and K33 are the corresponding elas-
tic constants. The magnitude of all Kii ∼ kBT/L ≈ 10−12 N (kBT =
4 × 10−21 J, L ≈ 10−10 m is the length of molecules). As the elastic con-
stants are typically not very different from one another, they are sometimes
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assumed to be equal which leads to the so-called one-constant approximation

fd =
K

2

[
(∇ · n)2 + (∇× n)2

]
. (3.16)

Figure 3.6: Splay, twist, and bend deformation [1].

To better understand the spatial nature of the three deformation modes,
consider three examples of director fields slightly deviating from the uniform
field along the x axis (Fig. 3.6). A simple example of the splay deformation
is

n(x) = (ax, 0, 1), (3.17)

where a � 1 so that |n| = 1 to lowest order. Obviously ∇ · n = a. To
visualize the twist deformation, consider the director field of type

n(y) = (ay, 0, 1). (3.18)

For this director field, ∇×n = (0, 0,−a) and the dot product n ·∇×n = −a
directly reflects the deviation of the director from the uniform field. The
bend deformation can be illustrated by

n(z) = (az, 0, 1), (3.19)

where again a � 1. This gives ∇ × n = (0, a, 0) and the cross product
n×∇× n = (−a, 0, a2z) ≈ (−a, 0, 0).
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Chiral nematics

Chiral nematics are characterized by a finite spontaneous twist due to the
chirality of the molecules. The ground state will ideally have a given pre-
ferred twist q0 everywhere so that the Frank free energy reads

fd =
K11

2
(∇ · n)2 +

K22

2
(n · ∇ × n− q0)2 +

K33

2
(n×∇× n)2 , (3.20)

where q0 = 2π/λ and λ is the pitch.

The traditional notion of a chiral nematic is summarized by the helical
director field n(z) = (cos q0z, sin q0z, 0). But this structure does not really
produce the ideal twisted structure because the director only twists in one
direction perpendicular to the director (z) but not in the other perpendicular
direction (y). The ideal structure is found in the core of the double-twist
cylinder (Fig. 3.7) but on going outwards from the center of the cylinder the
double-twist structure is gradually violated. — The double-twist cylinders
are the essential building block of the blue phases.

Figure 3.7: Double-twist structure. Source: Wikipedia,
http://en.wikipedia.org/wiki/Blue phase mode LCD.

Surface anchoring

Most liquid-crystal devices are based on thin cells where the nematic is
sandwiched between two glass plates treated to induce a specific preferred
orientation of the director often referred to as the easy axis. The surfaces
can be treated mechanically, typically by rubbing, or chemically, and the
effect is called anchoring. In homeotropic anchoring, the easy axis is normal
to the plates; in planar anchoring it lies in the plane but there exists no
specific in-plane orientation; and in homogeneous anchoring the in-plane
orientation is specified.

The anchoring may be either strong where the director at the surface
is prescribed or weak where the director may deviate from the easy axis
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but the deviation is associated to an increase of the anchoring energy. The
anchoring energy is usually modeled by the Rapini-Papoular energy

Fs = −W
2

∫
(n · k)2dA, (3.21)

where W is the anchoring strength and k is the easy axis. This energy is
minimal if n = k.

The Frank elastic constant and the anchoring strength can be combined
into the so-called extrapolation length

Λ =
K

W
. (3.22)

If anchoring is strong, Λ→ 0.
The relevance of the extrapolation length can be appreciated by the

following example. Consider a twisted nematic cell with homogeneous an-
choring at the two walls so that the easy axis points along the x axis at
z = 0 and makes an angle of θ0 with the x axis at z = h. Assume that the
director field is twisted

n(z) = (cos θ(z), sin θ(z), 0) (3.23)

and also assume that the anchoring at z = 0 is strong. The total elastic
energy per unit area reads

Fd + Fs
A

=
K22

2

∫ (
dθ

dz

)2

dz +
W

2
(Θ− θ0)2 + const., (3.24)

where Θ = θ(z = h) and the Rapini-Papoular anchoring energy has been
approximated by the lowest-order, parabolic term: (n ·k)2 = cos2(Θ−θ0) in
Eq. (3.21) has been expanded in Taylor series 1− (Θ−θ0)2 and the constant
1 has been omitted. The Euler-Lagrange equation is d2θ/dz2 = 0 so that θ
is a linear function of z:

θ(z) = Θ
z

h
. (3.25)

The boundary condition is ∂fs/∂θ|z=h = ∂fd/∂θ
′|z=h where fs is area den-

sity of the surface energy and θ′ = dθ/dz. If spelled out, W (Θ− θ0) =
−K22Θ/h or

Θ− θ0 = −Λ

h
Θ. (3.26)

The solution to this equation is

Θ =
1

1 + Λ/h
θ0. (3.27)
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If the extrapolation length is small compared to cell thickness, Λ � h,
Θ = θ0 and the actual orientation of the director at the z = h wall coincides
with the easy axis Θ = θ0. This is the strong anchoring regime. On the
other hand, if Λ is comparable to h, then Θ is smaller than θ0.

External field

The electric and magnetic properties of nematogenic molecules are anisotro-
pic. As a result, an external electric and magnetic field orients the director,
usually such that the director is parallel to the field. In case of magnetic
field, the interaction energy per unit volume can be written as

fmag = − χa
2µ0

(n ·B)2 , (3.28)

where χa = χ‖ − χ⊥ is the anisotropy of the magnetic susceptibility (χ‖
and χ⊥ are the susceptibilities along and perpendicular to n, respectively),
and B is the magnetic field. If χa > 0, director tends to be parallel to the
director and the energy is lowest for n ‖ B. — The effect of the electric field
is qualitatively very similar.

Frederiks transition

The basic element of liquid-crystal displays is a thin cell filled with a nematic.
The walls of the cell are treated to induce a specific anchoring and covered
with transparent conductive electrodes. The anchoring easy axis is chosen
such that it does not coincide with the direction of the electric field. As long
as the field is off, the director structure is dictated by the anchoring only.
After the field is turned on the director is reoriented and this changes the
optical properties of the cell, typically such that the off state is transparent
and the on state is dark.

The transition between the two states is continuous and takes place
at a finite field. In the strong-anchoring cell, the critical field is inversely
proportional to the cell thickness squared

Bc =

√
π2µ0Kii

χah2
. (3.29)

The elastic constant in question depends on the type of deformation.
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3.3 Defects∗

The texture of liquid crystals is often nonuniform, showing regions where the
director is obviously nonuniform (Fig. 3.8) [15]. On approaching the centers
of these regions, the gradient of the director obviously diverges — this is
witnessed by the rapid variation of the appearance and optical properties of
the material. The points where the director field seems to be undefined are
called defects or more correctly disclinations.

Figure 3.8: Defects in nematics as seen through crossed polarizers; this is
the so-called Schlieren texture [15].

Imagine that the nematic director field is two-dimensional; this corre-
sponds to line defects. Due to the equivalence of n and −n, the net change
of the orientation of the director along a closed loop around the defect can
be a half-integer multiple of 2π:∮

dθ

ds
ds = 2πk, (3.30)

where k = ±1/2,±1,±3/2 . . . (k = 0 is also possible but this is a defect-free
configuration.) The number k is the defect strength. A few typical defects
are shown in Fig. 3.9. The k = −1 disclination is hyperbolic and does not
rely on the n ↔ −n equivalence; it exists in a proper vectorial field too.
The k = −1/2 and k = 1/2 are typical for the nematic phase. The radial
k = 1 and the annular k = 1 defect are of the same strength. In the former,
the angle between the director and (say) x axis is given by θ = φ where φ is
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the azimuthal angle whereas in the latter θ = φ+ π/2. Both director fields
can be described by

θ = kφ+ φ0, (3.31)

where k = 1 and φ0 = 0 and π/2, respectively.

Figure 3.9: 2D nematic disclinations: k = −1,−1/2, 1/2, and two different
k = 1 defects [15].

Within the one-constant approximation, the energy of defects can be
calculated fairly straightforwardly. For 2D director field, the free energy
density per unit volume reads

fd =
K

2
(∇θ)2 (3.32)

and at equilibrium ∇2θ = 0. This equation is solved by Eq. (3.31). Recall
that in cylindrical coordinates ∇f = er∂f/∂r + (eφ/r)∂f/∂φ + ez∂f/∂z
and ∇ ·A = (∂/∂r + 1/r)Ar + (1/r)∂Aφ/∂φ+ ∂Az/∂z. Thus the gradient
of θ = kφ + φ0 is ∇θ = (k/r)eφ and the divergence of ∇θ is 0. The energy
per unit length of the defect line reads

F

L
=
K

2

∫ rmax

a

(
k

r

)2

2πrdr = πKk2
∫ rmax

a

dr

r
= πKk2 ln

(rmax
a

)
. (3.33)

Here a ∼ 10 nm is the radius of the defect core and rmax is the size of
the region containing the defect. Note that the elastic energy of the defect
diverges with rmax albeit logarithmically and that the total energy also
includes the energy of the molten defect core.
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The more important conclusion drawn from Eq. (3.33) is that the defect
energy is proportional to the square of defect strength. From the topological
perspective, a single k = 1 defect is equivalent to two k = 1/2 defects
(Fig. 3.10) but its energy is bigger than twice the energy of a k = 1/2 defect
pair:

Fk=1

L
= πK ln

(rmax
a

)
vs. 2

Fk=1/2

L
=

1

2
πK ln

(rmax
a

)
. (3.34)

This means that only half-integer-strength defect lines are stable.

Figure 3.10: A k = 1 defect line can be split into two k = 1/2 defects.

In fact, line defects of integer strength of nematics in a capillary usu-
ally escape along the third dimension, leading to a director field of finite
energy per unit length of F/L ≈ 3πK [15]. Adjacent regions where the
director has escaped in opposite directions are separated by point defects.
The description of point defects is much more complicated.

3.4 Nematic order parameter∗

The director n does not capture all aspects of nematic order — it only
describes the preferred molecular orientation but not the magnitude of order
or its biaxiality. The full nematic order parameter is defined based on the
anisotropy of a suitable macroscopic quantity such as magnetic or electric
susceptibility. In isotropic liquids, susceptibility is isotropic:

M =

 χ
χ

χ

H. (3.35)
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On the other hand, in a uniaxial nematic with n along z axis,

M =

 χ⊥
χ⊥

χ‖

H (3.36)

where χ⊥ and χ‖ are susceptibilities perpendicular and parallel to the direc-
tor, respectively. Thus the nematic order can be defined by the anisotropy
of the magnetic susceptibility

Qij ∝ χij −
1

3
χkkδij . (3.37)

The normalization is usually such that the largest eigenvalue is the degree of
nematic order S = 〈P2(cos θ)〉 [Eq. (3.13)]. Since Qij is proportional to the
anisotropy of χij its trace must vanish so that in a uniaxial nematic liquid
crystal

Q =

 −S/2 −S/2
S

 . (3.38)

In case of biaxial order, the eigenvalues corresponding to directions perpen-
dicular to n are not identical and

Q =

 −S/2− P −S/2 + P
S

 , (3.39)

where P is the degree of biaxiality. As biaxial nematics are rather exotic,
they will not be considered here; we merely note that P reads

P =
1

2
〈sin2 θ cos 2φ〉, (3.40)

where φ is the azimuthal angle of the molecular long axis.
From the definition of the degree of order

S =
1

2
〈3 cos2 θ − 1〉 (3.41)

we see that if all molecules point along the director such that θ = 0 for all
molecules S = 1. This state corresponds to perfect nematic order (Fig. 3.11).
If the molecules are oriented isotropically, 〈cos2 θ〉 = 1/3 and S = 0; this
is the isotropic phase. A special kind of nematic orientational order is that
with all molecules perpendicular to the director such that θ = π/2. In this
case S = −1/2.

In real nematics, S may reach 0.6 or so; on approaching the nematic-
isotropic transition by heating, S decreases.
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Figure 3.11: Nematic order with S = 1, isotropic order with S = 0, nematic
order with S = −1/2.

3.5 Landau-de Gennes theory∗

The tensorial order parameter Q can be used to construct a Landau-type
phenomenological theory of the nematic-isotropic transition. This theory is
of interest both directly and because nematics are laden with topological
defects where the director is not defined and the orientational order locally
melts.

In the Landau-de Gennes theory, the free energy per unit volume is
expanded in terms of the scalar invariants of Q. Since Q is traceless, there
is no first-order invariant to rigid rotations. The second-order invariant is

QijQji (3.42)

and the third-order invariant is

QijQjkQki. (3.43)

The Landau-de Gennes expansion reads

fLdG = f0 +
1

2
a(T − T ∗)QijQji −

1

3
bQijQjkQki +

1

4
c (QijQji)

2 . (3.44)

a, b, and c are phenomenological constants and T ∗ is the so-called supercool-
ing temperature.

This expansion is constructed such that both the isotropic phase with
S = 0 and the nematic phase with S > 0 are possible solutions. The specific
features of this theory are:
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i) At T < T ∗, the coefficient of the second-order term is negative so that
at low temperatures isotropic phase is unstable. This is why T ∗ is
referred to as the supercooling temperature.

ii) Since the states with S = S′ > 0 and S = −S′ < 0 are physically
inequivalent, the third-order term is not forbidden. In order to favor
states with positive S which are observed, b < 0.

iii) In order to stabilize the theory and make the Landau expansion boun-
ded from below, the fourth-order term is included.

The workings of the Landau-de Gennes theory is best seen by considering
uniaxial homogeneous order with P = 0. This gives

fLdG = f0 +
3a(T − T ∗)

4
S2 − b

4
S3 +

9c

16
S4. (3.45)

The dependence of the free energy on S at a few representative temperatures
is shown in Fig. 3.12.

order parameter

free energy

Figure 3.12: Landau-de Gennes theory of nematic-isotropic transition: Free
energy at T < T ∗ (bottom blue curve), T = TNI (thick magenta curve), and
T > T ∗∗ (top blue curve). The top and bottom red curves correspond to
the supercooling temperature T ∗ and to the superheating temperature T ∗∗,
respectively.

Because of the third-order term, the nematic-isotropic transition is dis-
continuous and the degree of order S experiences a jump. Also calculated
can be the phase transition temperature TNI (where the free energies of the
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isotropic and the nematic phase are the same)

TNI = T ∗ +
b2

27ac
(3.46)

and the superheating temperature T ∗∗ of the nematic phase (corresponding
to the state where the local minimum at S > 0 vanishes)

T ∗∗ = T ∗ +
b2

24ac
. (3.47)

The theory can be used to calculate all thermodynamic quantities of interest:
Latent heat, critical exponents, susceptibility. . .

To describe the defects, the basic theory must be extended so as to
account for inhomogeneous order. There are two elastic terms

felLdG =
1

2
L1
∂Qij
∂xk

∂Qij
∂xk

+
1

2
L2
∂Qij
∂xj

∂Qik
∂xk

. (3.48)

Note that the existence of just two terms is inconsistent with the Frank free
energy which includes three elastic modes.

3.6 Smectic elasticity

Unlike simple fluids where the density is uniform, smectics are characterized
by a periodically modulated density profile [16]. In a coordinate system
where the z axis points normal to the layers,

ρ(r) = ρ0 + [〈ψ〉 exp (iq0z) + c.c.] . (3.49)

〈ψ〉 is thus the smectic order parameter, its magnitude measuring the devi-
ation of the density from the mean value ρ0. q0 = 2π/d is the wavevector
corresponding to layer spacing d. 〈ψ〉 is a complex number and can be
written as

〈ψ〉 = |〈ψ〉| exp (−iq0u(r)) , (3.50)

where u(r) denotes the displacement of the layers from the equilibrium po-
sition. A constant u represents a translation of the whole smectic liquid
crystal along the z axis, and this does not change the energy. Like in crys-
tals, it is the spatial variation of the displacement that gives rise to elastic
energy — the only difference being that smectics are 2D liquids and so it
is only the displacement in the direction perpendicular to the layers that
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matters. Like in crystals, we seek an elastic energy expanded in terms of
∇u in a manner consistent with the symmetry of smectics.

In smectics A, the molecules are arranged in layers and since they are
perpendicular to the layers, the layer normal N and the director n coincide.
This constraint is maintained by the low-energy splay director deformations,
whereas the twist and bend deformations of the director field violate the con-
straint and are thus energetically more costly. This is illustrated in Fig. 3.13
which also shows that the splay deformation of the director field corresponds
to the bend deformation of the layers at constant spacing, whereas the bend
deformation of the director corresponds to compression/dilation of the lay-
ers [16].

Figure 3.13: In smectics, the N = n constraint is consistent with splay
deformations but not with bend and twist deformations [16].

The layered structure of smectic implies that we need to consider sep-
arately the normal and the in-plane components of the gradient of u: ∇zu
changes the layer spacing whereas ∇⊥u changes the orientation of the layers
(Fig. 3.14).

Elastic theory

Since constant ∇⊥u corresponds to a rigid rotation of the layers (and thus
a different choice of the coordinate system), there is no elastic energy as-
sociated to it; it is only ∇2

⊥u (the radius of curvature) that gives rise to
elasticity. We conclude that there must be two terms in the elastic free en-
ergy of smectic, one associated with layer compression and the other one to
layer bending:

fd =
B

2
(∇zu)2 +

K11

2

(
∇2
⊥u
)2
. (3.51)

B is the compression modulus and K11 is the bending constant — Fig. 3.13
suggests that the bending constant is the same as the nematic splay constant,
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Figure 3.14: A modulated layer displacement along the layer normal changes
layer spacing. The in-plane gradient of u tilts the layers and ∇2

⊥u bends
them [16].

and we use the same symbol. This elastic energy is correct to lowest order,
i.e., if N and the director n coincide.

It is clear from the dimensions of the two terms that the unit of B and
K11 are not the same (J/m3 and J/m, respectively). The relative weight of
the two terms in Eq. (3.51) is conventionally parametrized by the penetration
length (or depth)

λ =

√
K11

B
(3.52)

so that

fd =
B

2

[
(∇zu)2 + λ2

(
∇2
⊥u
)2]

. (3.53)

The penetration length is related to the length over which an imposed dis-
tortion of the smectic layers relaxes.

It can be shown that the deformation of smectic A in contact with an
undulating hard surface decays exponentially with distance from the surface,
the characteristic length being l = 1/k2λ where k is the wave vector of the
undulations. The shape of the wall at z = 0 is described by

z(x) = a cos kx, (3.54)
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where k is the wavevector such that ka � 1, and we seek solutions of the
form

u(x, z) = w(z) cos kx. (3.55)

Then the free energy density is

fd =
B

2

(
dw

dz

)2

cos2 kx+
K11

2
k4w2 cos2 kx (3.56)

and the Euler-Lagrange equation for w(z) reads

d2w

dz2
=
K11

B
k4w = λ2k4w. (3.57)

The solution is satisfying the boundary condition w(z = 0) = a is

w(z) = a exp(−z/`), (3.58)

where

` =
1

k2λ
. (3.59)

Thus long-wavelength surface imperfections with small k give rise to large
`: Distortions of smectic order penetrate deep into the sample.

Elastic theory reexamined

The above theory of smectic elasticity has been derived based on the as-
sumption that the director and the layer normal coincide n = N. This is
not necessarily true and in a more general framework, these two vectors may
depart from one another so that in a smectic where the undisturbed state
is described by n = N = ez, deviations δn and δN need not be the same.
This leads to an elastic energy of type

D

2
(δn− δN)2 . (3.60)

So one can write the smectic elastic energy as a sum of layer compression
term B(∇zu)2, the coupling term, and the Frank free energy penalizing the
director distortions:

fd =
B

2
(∇zu)2 +

D

2
(δn− δN)2

+
K11

2
(∇ · n)2 +

K22

2
(n · ∇ × n)2 +

K33

2
(n×∇× n)2 .(3.61)
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Here n = ez + δn.
In terms of the layer displacement u, N is to lowest order given by

N = ez + δN =

(
−∂u
∂x
,−∂u

∂y
, 1

)
. (3.62)

The coupling term is minimal if δn = δN = −∇⊥u so that the splay Frank
term reads

∇ · δn = ∇ ·
(
−∂u
∂x
,−∂u

∂y
, 0

)
= −∇2

⊥u. (3.63)

So the splay term is the same as the layer bending term in Eq. (3.51). Yet
another way of looking at it is to consider infinitesimal splay deformation of
a director along ez: n = (ax, 0, 1) so that δn = axex and

u(x) = −ax
2

2
. (3.64)

The layer displacement does not depend on y or z and layer spacing is thus
locally constant.

What about twist and bend deformations? The twist mode is given by,
e.g.,

δn = (ay, 0, 0) (3.65)

so that if δn were equal to δN = −∇⊥u, the layer displacement would be
given by

u(x, y) = −axy (3.66)

and become infinitely large as x → ±∞ even for very small separations
along the twist direction y. Thus the condition n = N cannot be met and
twist deformation in smectics is not possible. [In fact, it is possible in the
so-called twist grain boundary phases (Fig. 3.15) where the strain due to
the above incompatibility is relaxed by screw dislocations.]

In a bend deformation,

δn = (az, 0, 0) (3.67)

and
u(x, z) = −axz (3.68)

so that the layer displacement increases linearly with x, the slope being
proportional to z. This fan-like pattern of layers does not preserve layer
spacing and is thus impossible, so the coupling term cannot be zero. Thus
the bend and the twist deformations are forbidden in smectics.
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Figure 3.15: Twist grain boundary phase [10].

Nonlinear elasticity

The theory presented above is only invariant to infinitesimal rotations. For
finite rotations, it does not account properly for the layer compression, which
can be visualized as follows. If the layers are tilted from the z axis by an
angle θ (which is approximately equal to ≈ ∂u/∂x to lowest order), the
equilibrium layer thickness d is decreased by

δd = d sin
(π

2
− θ
)
− d = d (cos θ − 1) ≈ −dθ

2

2
≈ −d1

2

(
∂u

∂x

)2

. (3.69)

To maintain layer spacing, this decrease must be compensated by dilation
in the z direction, the strain being given by ∂u/∂z. So layer compression or
dilation is really associated to the deviation of the gradients of u from

∂u

∂z
− 1

2

(
∂u

∂x

)2

(3.70)

rather than by ∂u/∂z alone, and the corresponding energy density term is

B

2

[
∂u

∂z
− 1

2

(
∂u

∂x

)2
]2
. (3.71)
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In a mathematically complete way, a more complete free energy density valid
for finite-angle rotations reads

fd =
B

2

[
∇zu−

1

2
(∇u)2

]2
+
K11

2

(
∇2
⊥u
)2
. (3.72)

The nonlinear terms make the theory much more complicated.



64 CHAPTER 3. LIQUID CRYSTALS



Chapter 4

Polymers

Polymeric materials are based on long chain-like molecules. They are ubiq-
uitous in everyday life as they are easy to mold and shape, and they are
used for a range of products from textile fibers, plastic bags, and tires to
glues and insulation materials such as styrofoam. Examples of synthetic
polymers are polyvynilchloride and polyethylene; natural polymers include
starch, DNA, etc. The basic building block of a polymer is a monomer
and although the chemical composition of the monomer is important, most
physical properties of polymers are generic and independent of chemistry.
Instead they reflect the large length of polymers, their cross-linking (e.g., in
gels), and entanglement.

The main property of any polymer is its degree of polymerization N ,
i.e., the number of monomers in the polymer. In most samples, the degree
of polymerization varies from a chain to a chain and is polydisperse. In
addition to linear polymers, there also exist ring and star polymers. Poly-
mers may consist of a single type of monomer (homopolymers) or of two
or more monomers (copolymers). Block copolymers consist of two typically
incompatible covalently bonded blocks.

Polymers come in several states of matter. Polymer melts and solutions
are far more viscous than simple liquids. Polymers readily form disordered
glassy structures and crystalline polymers are usually not entirely crystal-
lized; the crystalline spherulites are separated by a disordered liquid or a
glassy matrix. Liquid-crystalline order in polymers may be due to elongated
monomers included either as a main-chain or a side-chain component.

65
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4.1 Single polymer chain∗

Freely jointed chain∗

The simplest model of the structure of a single linear polymer is the freely
jointed chain where we assume that the bonds between the monomers of
length a are perfectly flexible. If the repulsion between the monomers is
neglected, the monomers can be considered the steps of a random walk in
3D. This means that the average end-to-end distance can be computed by
averaging

r = a1 + a2 + . . .+ aN =
N∑
i=1

ai, (4.1)

where ai is the vector describing the orientation of the ith monomer. The
average end-to-end distance is a measure of polymer size:

〈r2〉 = 〈r · r〉 =

〈
N∑

i,j=1

ai · aj

〉
. (4.2)

As the orientations of any two monomers are uncorrelated, it is instructive
to write the double sum such that the cases with i = j are separated from
the rest:

〈r2〉 = N〈a2
i 〉+

〈
N∑

i,j,=1
i 6=j

ai · aj

〉
. (4.3)

The second average is 0 and thus

〈r2〉 = Na2. (4.4)

In other words, the size of the polymer coil is proportional to N1/2. This is
an example of a scaling law: This formula holds independent of the chemistry
of a polymer. Chains where Eq. (4.4) is valid are referred to as Gaussian or
ideal chains.

Radius of gyration

The size of the polymer coil can be measured in terms of r =
√

r2. Often it
is expressed using the so-called radius of gyration defined by

r2G =
1

N

N∑
i=1

〈|ri − rc|2〉, (4.5)
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where rc = (1/N)
∑N

j=1 rj is the location of the center of mass. An equiva-
lent definition of the radius of gyration is

r2G =
1

2N2

N∑
i,j=1

〈|ri − rj |2〉, (4.6)

which can be proven easily. Note that

N∑
i,j=1

(ri − rj)
2 =

N∑
i,j=1

[(ri − rc)− (rj − rc)]
2 (4.7)

=
N∑

i,j=1

[
(ri − rc)

2 − 2(ri − rc)(rj − rc) + (rj − rc)
2
]
(4.8)

= N
N∑
i=1

(ri − rc)
2 − 2

N∑
i=1

(ri − rc)
N∑
j=1

(rj − rc)

+N

N∑
j=1

(rj − rc)
2 (4.9)

Since
∑N

i=1(ri − rc) = 0 we have
∑N

i,j=1 (ri − rj)
2 = 2N

∑N
i=1(ri − rc)

2. —
It can be shown that

r2G =
r2

6
. (4.10)

Entropic elasticity∗

The random-walk model can be used to compute the free energy of the
freely jointed chain. To this end, consider the distribution of the end-to-end
distances. Let us do this first in 1D; let ax be the step length and N+ and
N− = N−N+ the numbers of steps to the right and to the left, respectively.
The total end-to-end distance is

Rx = (N+ −N−)ax (4.11)

and the number of configurations giving a certain Rx is Ωx = N !/(N+!N−!)
so that ln Ωx can be approximated using Stirling formula:

ln Ωx = N lnN −N+ lnN+ − (N −N+) ln(N −N+) (4.12)

= −N [f ln f + (1− f) ln(1− f)] , (4.13)
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where f = N+/N . ln Ωx peaks at f = 1/2 and since d2 ln Ωx/df
2|f=1/2 =

−4N ,

ln Ωx = N ln 2− 2N

(
f − 1

2

)2

= N ln 2− 1

2N
(N+ −N−)2. (4.14)

Now N+ −N− = Rx/ax so that

Ωx ∝ exp

(
− R2

x

2Na2x

)
. (4.15)

In 3D, we also need to include Ωy and Ωz given by analogous expressions.
As R2

x +R2
y +R2

z = R2 and a2x = a2y = a2z = a2/3, we find that

Ω ∝ exp

(
− 3R2

2Na2

)
(4.16)

and the complete 3D probability distribution is

P (r, N) =

(
2πNa2

3

)−3/2
exp

(
− 3r2

2Na2

)
. (4.17)

Using Boltzmann formula, we now have S(r, N) = kB lnP (r, N) and
F = −TS:

F (r, N) =
3kBTr2

2Na2
+ const. (4.18)

Like in a Hookean spring, the free energy is proportional to extension squa-
red. Note that the free energy is proportional to kBT , which witnesses to
the entropic origin of the elasticity.

Short-range correlations: Persistence length and Kuhn length

One may think that the freely jointed chain is a poor approximation and
that the behavior of real chains where the bonds are not entirely free may
change the above predictions a lot. In a more realistic model of a monomer-
monomer bond, we assume that the ith and (i + 1)st monomer make an
angle of θ and that the bond can rotate freely on the cone of angle θ. Then
ai = aui where u is the unit vector along ai; vi and wi are the other two
members of the orthonormal triad of basis vectors. Then

ai+1 = a (cos θui + sin θ cosφivi + sin θ sinφiwi) , (4.19)
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where φ is the azimuthal angle describing the orientation of ai+1 relative to
ai. As the bond energy is independent of φi,

〈ai · ai+1〉 = a2 cos θ. (4.20)

Now

ai+2 = a (cos θui+1 + sin θ cosφi+1vi+1 + sin θ sinφi+1wi+1) (4.21)

= a
(

cos2 θui + cos θ sin θ cosφivi + cos θ sin θ sinφiwi

+ sin θ cosφi+1vi+1 + sin θ sinφi+1wi+1

)
. (4.22)

We compute the dot product ai · ai+2. After averaging over φi and φi+1 all
terms but the first one vanish and we have

〈ai · ai+2〉 = a2 cos2 θ. (4.23)

We conclude that

〈ai · ai+m〉 = a2 cosm θ. (4.24)

As cos θ < 1, the orientational correlations between the monomers decay
along the chain. The decay is characterized by the so-called persistence
length

`p = lim
N→∞

〈u1 · r〉 = lim
N→∞

〈
u1 · a

N∑
i=1

ui

〉
(4.25)

= a

∞∑
m=0

〈u1 · u1+m〉 = a

∞∑
m=0

cosm θ =
a

1− cos θ
. (4.26)

In a perfectly stiff chain θ = 0 and `p →∞. In general `p > a.

After introducing the persistence length, we can visualize the polymer as
a freely jointed chain of segments of length `p. The number of segments in
the polymer is Ns = N/g where g is the number of monomers in a segment.
Thus we can reinterpret Eq. (4.4) to compute the end-to-end distance in the
polymer:

〈r2〉 = Ns〈a2
s〉 =

N

g
〈a2
s〉, (4.27)

where as is the vector pointing from the beginning of a segment to the end.
This result shows that the scaling law 〈r2〉 ∝ N is unchanged by short-range
correlations.
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The above illustration of the persistence length is based on the model
where the angle between the neighboring monomers is fixed, which is not
completely general. A more general definition is based on the bending energy
of the polymer. If the polymer is approximated by a rod, then its bending
energy per unit length is

F

L
=
EI

2

(
1

R

)2

, (4.28)

where E is Young modulus, I is the moment of inertia of the rod, and R and
L are the radius of curvature and the length, respectively. The persistence
length is defined as the length where the bending energy of a rod with `p = R
(so that the rod is bent by an angle of 1 rd) is of the order of kBT :

F =
EI

2

(
1

`p

)2

`p =
EI

2`p
∼ kBT (4.29)

so that

`p =
EI

kBT
. (4.30)

A related measure of polymer stiffness is the Kuhn length. In a fully
extended form, the length of a real chain is

rmax = Nsas, (4.31)

where as is the segment length. Together with Eq. (4.27), this equation
implies that the segment length can be defined by the ratio 〈r2〉/rmax and
this is known as the Kuhn length:

`K =
〈r2〉
rmax

. (4.32)

The Kuhn and the persistence lengths are very similar.

Worm-like chain∗

The freely-jointed chain is an idealization. A more realistic model of poly-
mers is the worm-like chain (also referred to as the Kratky-Porod model)
where the polymer is considered as a rod of finite flexibility. In this case,
the orientational correlations along the chain decay exponentially

〈t(s = 0) · t(s)〉 = exp

(
− s

`p

)
, (4.33)
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θ being the angle between tangents at s and in the origin. This can be seen
by first considering the correlations between two adjacent monomers. If θ is
the angle between them and the bending energy is given by

Ebend =
EI

2a
|ui+1 − ui|2 = −EI

a
ui+1 · ui + const. = −EI

a
cos θ + const.

(4.34)
(where EI is the bending rigidity of the polymer and a is the monomer
length), then

〈ui · ui+1〉 = 〈cos θ〉 =

∫
cos θ exp(β(EI/a) cos θ) sin θdθ∫

exp(β(EI/a) cos θ) sin θdθ
(4.35)

= coth
βEI

a
− a

βEI
≈ 1− a

βEI
. (4.36)

In the last step, we assumed that the temperature is low so that βEI/a� 1.

Persistence length is the distance beyond which the orientational corre-
lations vanish, and short-range order is encoded by the exponential decay
of correlations

〈ui · uj〉 = exp

(
−|i− j|a

`p

)
, (4.37)

where a is the monomer size. For j = i+ 1 we have

〈ui · ui+1〉 = exp

(
− a
`p

)
≈ 1− a

`p
. (4.38)

By comparing this result to Eq. (4.36), we recover Eq. (4.30).

Now we calculate the end-to-end distance. In terms of the tangent vector
t along the polymer contour of length l,

〈r2〉 = 〈r · r〉 =

〈∫ l

0
t(s)ds ·

∫ l

0
t(s′)ds′

〉
(4.39)

=

∫ l

0

∫ l

0

〈
t(s) · t(s′)

〉
dsds′ (4.40)

=

∫ l

0
ds

[∫ s

0
exp

(
s′ − s
`p

)
ds′ +

∫ l

s
exp

(
−s
′ − s
`p

)
ds′
]

(4.41)

=

∫ l

0
ds

{
`p

[
1− exp

(
− s

`p

)]
+ `p

[
1− exp

(
− l − s

`p

)]]
(4.42)

= 2`pl

{
1− `p

l

[
1− exp

(
− l

`p

)]}
. (4.43)
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The two limits of this result are: i) the freely jointed chain with l � `p
and ii) the rigid rod with l � `p. In the first case, the second term in the
curly brackets can be neglected and we have r2 ∝ l ∝ N consistent with
Eq. (4.4). In the second case the exponent can be expanded to second order
exp(−l/`p) ≈ 1 − l/`p + (l/`p)

2/2 + . . . and the curly bracket reduces to
l/(2`p) so that r2 = l2 as expected.

Steric repulsion between monomers: Expanded chains∗

The restricted bond angle model represents a simple way of incorporating
short-range correlations in the description of the polymer. The correlations
between the more distant monomers due to the finite size of the monomers
are far more important than the short-range correlations, and they are most
straightforwardly accounted for by Flory’s model. In this model, the poly-
mer is treated as a gas of monomers contained in a box of volume ∼ r3. The
free volume available to the monomers is

Vfree = r3 −NVexcl, (4.44)

where Vexcl = V1/2 is the excluded volume per monomer and V1 is the volume
of one monomer; 1/2 accounts for the pairwise nature of steric repulsion.
Like in Onsager theory of nematic order, in the limit of small density the
excess free energy due to excluded-volume interactions is

F ex = NkBT
NV1
2r3

. (4.45)

This term favors as large a size of polymer as possible and is opposed by the
elasticity of the chain. The total free energy thus reads

F = kBT
3r2

2Na2
+ kBT

N2V1
2r3

. (4.46)

By minimizing this expression with respect to r we obtain 3r/(Na2) −
3V1N

2/(2r4) = 0. Since V1 ∝ a3 we find that in equilibrium the size of
an expanded chain is

r ∝ aN3/5. (4.47)

The exponent of 3/5 is very close to the exact result of the renormalization-
group analysis which gives r ∝ aN0.588. The thus defined size of the coil is
sometimes referred to as the Flory radius.
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4.2 Coil-globule transition

The above discussion of polymer coil size relies exclusively on the entropic
interactions of the neighboring and distant parts of chain. But the structure
of the polymer chain also depends on its interaction with the solvent. If the
polymer and the solvent repel each other, polymer coil collapses. On the
other hand, if the polymer-solvent contacts are favorable, the coil remains
swollen.

The energy of interaction between the monomers themselves as well as
between the monomers and the solvent can be included in terms of a sim-
ple mean-field theory based on local concentrations of the monomers and
the solvent within the volume occupied by the coil. The local density of
monomers within the coil is

ρl ∼
N

r3
. (4.48)

Then the number of monomer-monomer contacts within the coil volume is

Npp =
1

2
zNV1ρl, (4.49)

where V1 is the monomer volume. This result can be interpreted as follows:
The total volume occupied by the monomers of a chain is NV1, and the
number of times a monomer will be located within this volume (and thus
be next to another monomer) is given by the product of NV1 and ρl. The
number of monomer-monomer contacts is then NV1ρl multiplied by z, the
number of neighbors of each site occupied either by a monomer or a solvent
molecule. The final result must be divided by 2 so as not to count each
monomer-monomer pair twice.

In a similar way, we calculate the number of monomer-solvent contacts
which is

Nps = zNV1(ρ0 − ρl). (4.50)

Here ρ0−ρl is the local density of the solvent; we denote the overall density
by ρ0. Thus NV1(ρ0−ρl) is the number of times a solvent molecule is located
within the total volume occupied by the monomers, thereby establishing a
monomer-solvent contact. Again the number of contacts depends on the
coordination number z. — The number of actual solvent-solvent contacts is
the reference number of solvent-solvent contacts N0

ss decreased by Npp and
Nps:

Nss = N0
ss −Npp −Nps = N0

ss −
1

2
zNV1ρl − zNV1(ρ0 − ρl). (4.51)
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We assume that the interactions are pairwise additive, the monomer-
monomer, monomer-solvent, and solvent-solvent interaction energies being
εpp, εps, and εss, respectively. The total interaction energy is then

U int = εppNpp + εpsNps + εssNss (4.52)

= (εpp − εss)
1

2
zNV1ρl + (εps − εss)zNV1(ρ0 − ρl) + εssN

0
ss (4.53)

= (εpp + εss − 2εps)
1

2
zNV1ρl + (εps − εss)zNV1ρ0 + εssN

0
ss(4.54)

= (εpp + εss − 2εps)
1

2
zNV1ρl + const. (4.55)

In the final form, we only retain the term that depends on the density
(and thus on the structure) of the polymer coil. Now we introduce the
dimensionless interaction parameter χ defined by

χkBT =
1

2
z(2εps − εpp − εss) (4.56)

If interaction of monomer and solvent is favorable, i.e., εps < (εpp + εss)/2,
then χ < 0.

In terms of χ,
U int = −NkBTV1χρl + const. (4.57)

This result can now be used to renormalize the excluded-volume entropic
free energy of the chain [Eq. (4.45)] which has the same functional form.
Recall that ρl ∼ N/r3 and

F ex + U int = kBT (1− 2χ)
N2V1
2r3

+ const. (4.58)

We see that F ex+U int is positive if χ < 1/2. In this case, the F ex+U int plays
the same role as F ex alone and the qualitative behavior of the chain is the
same as if there were no monomer-monomer, monomer-solvent, and solvent-
solvent interactions. The size of the polymer coil is given by Eq. (4.47).
This is the so-called good solvent behavior.

On the other hand, if χ = 1/2 the F ex + U int = 0 and the effect of
excluded volume is counterbalanced by the attraction between the monomers
and the solvent molecules. This is the theta condition. If χ > 1/2, the
incompatibility of the solvent and the polymer is so large that the total
energy

F = kBT
3r2

Na2
+ kBT (1− 2χ)

N2V1
2r3

. (4.59)

is dominated by the second term which is negative such that the equilibrium
size of the chain tends to 0 and the polymer forms a globule.
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4.3 Polymer solutions

Dilute, semidilute, and concentrated solutions

Knowing how isolated polymer chains behave describes the dilute polymer
solutions. Due to their expanded rather than compact size, it takes a very
small concentration of polymers to enter the so-called semidilute regime
where the polymers partly overlap (Fig. 4.1)

Figure 4.1: Dilute, semidilute, and concentrated polymer solutions [2].

Let us compute the critical density of monomers needed for the overlap
of coils. We define it by

ρ∗ =
N

r3
. (4.60)

Since r = aN3/5 [Eq. (4.47)] we have

ρ∗ =
N

a3N9/5
=

1

a3N4/5
. (4.61)

In terms of monomer volume V1, the packing fraction is given by

η∗ = V1ρ
∗ =

V1

a3N4/5
(4.62)

and since V1 is typically smaller than a3 (this was not taken into account in
the above discussion of the Flory theory) we conclude that

η∗ < N−4/5. (4.63)

For a polymer of N ∼ 104 the critical packing fraction is very small, less than
η∗ ∼ 10−16/5 ≈ 0.001. Polymer solutions are dilute only if η < η∗ whereas
for η between 0.001 and 0.1 the interpenetration of chains is considerable.
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Osmotic pressure

At low concentrations, the osmotic pressure of a polymer solution can be
described by the virial expansion [cf. Eq. (2.76)]

Π = kbT
(
B1ρ+B2ρ

2 + . . .
)
. (4.64)

This equation differs from the ordinary low-molar-mass virial equation of
state [Eq. (2.76)] in that B1 is not 1 but

B1 =
1

N
. (4.65)

To understand this, note that the osmotic pressure is due to translational
motion of polymers rather than to the motion of chains. Thus the pressure
does not depend on the monomer density ρ but on the polymer density

ρp =
ρ

N
. (4.66)

Thus

βΠ =
ρ

N
+B2ρ

2 + . . . =
ρ

N
(1 +NB2ρ+ . . .) (4.67)

and
βΠ

ρp
= 1 +NB2ρ+ . . . (4.68)

If the experimentally measured osmotic pressure multiplied by β/ρp is plot-
ted against the so-called overlap ratio

x =
ρ

ρ∗
= ρpr

3 (4.69)

the measurements for all polymers collapse onto a single curve as shown in
Fig. 4.2 [2]. This suggests that the right-hand side of Eq. (4.68) depends on
x. In the dilute limit, it must be equal to 1 and we may expect that it can
be expanded in a power series of x. By keeping only the linear term we have

βΠ

ρp
= 1 +A2x+ . . . (4.70)

where A2 must be a constant. By comparing Eq. (4.68) and Eq. (4.70)
NB2ρ = A2ρpr

3 and

B2 = A2
ρpr

3

Nρ
= A2

r3

N2
. (4.71)
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Figure 4.2: Osmotic pressure in poly(α-methylstyrene) in toluene plotted
against mass density (a) for a range of degrees of polymerization spanning
2 orders of magnitude. Panel b shows the same curves multiplied by β/ρp
and plotted against the overlap ratio x [2].

By inserting this result in Eq. (4.68) we find that

βΠ

ρp
= 1 +A2r

3ρp + . . . (4.72)

which suggests that the dilute solution of coils behaves as a gas of hard
spheres of density ρp and size A2r

3 if we interpret the coefficient in front of
ρp as the hard-core second virial coefficient [Eq. (2.86)]. This behavior is
understandable as the overlap of two polymer coils involves many monomer-
monomer contacts.

The regime of entangled semi-dilute solution x > 1 is qualitatively very
different. Here the coils interpenetrate each other very much and pressure
should not depend on the degree of polymerization since the entanglement
happens at the level of segments much smaller than the chain length N .
This means that the right-hand side in Eq. (4.67) is independent of N . This
is only possible if the bracket, which depends on x, is a suitable power of x.
Thus

ρ

N
xk (4.73)
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must be independent of N . Since x = ρpr
3 = ρr3/N and r ∼ N3/5

[Eqs. (4.69) and (4.47)] ∼ ρN9/5/N = ρN4/5, this means that

N4k/5−1 (4.74)

is independent of N which implies that k = 5/4. We now use this result to
derive the dependence of the osmotic pressure on density in the semi-dilute
regime. From Eqs. (4.73) and Eqs. (4.69) it follows that βΠ ∼ ρ×ρ5/4 = ρ9/4

or
βΠ

ρ
∼ ρ5/4. (4.75)

This result is consistent with experiments.

4.4 Dynamical models

After the force acting on the ends of a polymer is turned off, the polymer
shape recoils with a characteristic relaxation time. In an unentangled melt,
this relaxation can be described by the so-called Rouse modes. The main
process of interest in an entangled melt is creep taking place after a terminal
time when the polymer begins to flow due to the applied shear stress. The
simplest model accounting for the observed behavior is the reptation theory.

Rouse modes

The Rouse picture of relaxation in polymers relies on a bead-and-spring
representation of the polymer where the chain is divided into the Rouse
sequences represented by beads; the bonds between the sequences are rep-
resented by springs of spring constant bR. The effect of neighboring chains
is subsumed in an effective viscosity experienced by each monomer of the
chain in question. In the overdamped limit, the equation of motion of bead
j reads

ζR
drj
dt

= bR (rj+1 − rj) + bR (rj−1 − rj) , (4.76)

the two terms on the right hand side corresponding to the two springs acting
on bead j. ζR is the friction coefficient. The spring constants bR can be
estimated using Eq. (4.18) which suggests that

bR =
3kBT

a2R
, (4.77)
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where aR is the length of the Rouse sequence. The x, y, and z directions are
decoupled and equivalent so that we need to consider only one of them:

ζR
dzj
dt

= bR (zj+1 − zj) + bR (zj−1 − zj) (4.78)

and the solutions are of the form

zj ∼ exp

(
− t
τ

)
exp(ijδ). (4.79)

The time dependence is exponential, the characteristic time being τ , whereas
the spatial dependence along the chain is wave-like and δ represents the
phase shift of neighboring beads. From Eq. (4.78) it follows that

τ−1 =
bR
ζR

(2− 2 cos δ) =
4bR
ζR

sin2 δ

2
. (4.80)

The relaxation rate τ−1 is smallest at small δ which corresponds to long-
wavelength modes, and maximal at δ = ±π which corresponds to an alter-
nating displacement pattern (Fig. 4.3).

Figure 4.3: Dependence of the Rouse relaxation rate on the phase shift δ [2].

Let us now determine the slowest relaxation rate. The phase shifts are
determined by the boundary conditions. At the two ends of the chain, the
tensile force vanishes and thus the displacement of the first and second bead
must be identical, and the same holds for the next-to-last and last bead:

z1 − z0 = 0 and zNR−1 − zNR−2 = 0. (4.81)

In the continuous limit

dz

dj

∣∣∣∣
j=0

= 0 and
dz

dj

∣∣∣∣
j=NR−1

= 0. (4.82)



80 CHAPTER 4. POLYMERS

The solutions of Eq. (4.78) compatible with these boundary conditions are

zj ∼ exp

(
− t
τ

)
cos(ijδ) (4.83)

if δ satisfies
sin ((NR − 1)δ) = 0, (4.84)

which follows from the second boundary condition (Fig. 4.4).

Figure 4.4: Displacement pattern of the m = 1 Rouse mode [2].

The allowed phase shifts are given by

δ =
mπ

NR − 1
(4.85)

where m = 0, 1, . . . , NR − 1. The phase shift δ and thus the relaxation rate
τ−1(δ) is smallest in the lowest-order Rouse mode with m = 1. This rate is
usually referred to as the Rouse rate and is given by

τ−1R =
4bR
ζR

sin2 π

2(NR − 1)
≈ bR
ζR

π2

(NR − 1)2
, (4.86)

where sin(δ/2) was approximated by δ/2. Using Eq. (4.77), we find that

τ−1R =
3π2kBT

ζRa2R(NR − 1)2
. (4.87)

It seems that this result depends on the choice of the size of Rouse sequences
aR but note that r2 = a2R(NR − 1). Thus

τR =
ζR/a

2
R

3π2kBT
r4. (4.88)
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This result makes sense only if the ratio ζR/a
2
R is independent of the choice

of the Rouse sequences, which is true if ζR is proportional to the number of
monomers in the sequence N/(NR − 1). In this case

τR ∼ N2, (4.89)

which is consistent with experimental results.

Reptation theory∗

Polymer melts flow but their response to shear stress is markedly viscoelas-
tic. This is due to the entanglement of the polymer chains, and the char-
acteristic time after which the melt flows depends on the degree of poly-
merization. The typical time dependence of the shear modulus is shown in
Fig. 4.5. At short times, the shear modulus is constant but after the so-
called terminal time τT it decreases dramatically and the polymer behaves
as a liquid.

Figure 4.5: Storage modulus in polystyrene vs. frequency for a range of
degrees of polymerization (which decreases from the leftmost curve to the
rightmost curve). The small-frequency edge of the plateau corresponds to
the terminal time. [7].

Experiments show that the terminal time increases with the degree of
polymerization approximately as τT ∝ N3.4. This dependence can be ac-
counted for by the simple tube model of polymer motion.

The main idea behind the reptation theory is that the entangled chains
cannot cross each other and that shear stress can only cause them to move
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along the tubes in which they reside. Lateral motion is not possible and this
kind of motion is referred to as reptation (Fig. 4.6).

Figure 4.6: Reptation: The neighboring polymers form a tube in which the
chain moves, and the time needed to leave the tube is the terminal time [1].

In this picture, a chain has relaxed after it has moved out of the tube of
its own length. The time needed for this lengthwise motion is the terminal
time, and it can be calculated by assuming that the motion is overdamped
so that the resistance force is proportional to the velocity, the ratio being
the mobility per monomer µm. Moving an N -monomer chain at a given
speed takes an N -times larger force so the chain mobility is

µchain =
µm
N
. (4.90)

The diffusion coefficient characterizing the 1D Brownian motion of the
chain within the tube can be related to the mobility by the Einstein formula

Dchain = kBTµchain =
kBTµm
N

. (4.91)

The chain escapes from the tube after it traverses a distance L = Nlm where
lm is the monomer length. For 1D Brownian motion, r2 = Dt and so

τT =
L2

Dchain
=

N2l20
kBTµm/N

∝ N3. (4.92)

This result is reasonably close to the experimentally observed relation τT ∼
N3.4. This basic version of the reptation theory can be refined by accounting
for the reptating motion of the neighboring chains and for the fluctuations of
the chain length — the length of chain undergoing Brownian motion within
the tube fluctuates in time, its average being proportional to

√
N .
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4.5 Gels∗

The polymers in a solution can be connected by cross-links so as to form a
macroscopic network of a finite shear modulus. This state is referred to as
a gel. The cross-links may be covalent bonds (in the chemical gels such as
rubber which is formed by vulcanization where linear polyisoprene chains of
natural rubber are cross-linked by sulphur) or physical (in the physical gels
such as gelatin). In physical gels, gelation can be controlled by temperature
and physical gels can often be melted into sols (i.e., a colloidal suspension
of solid particles forming the gel) by heating. Conversely, gelation can be
induced by cooling.

During the sol-gel transition, the number of cross-links increases contin-
uously but the transition is abrupt: As soon as the number of cross-links
exceeds a threshold, the gel is formed. Gelation is an example of a percola-
tion transition best illustrated by a lattice model (Fig. 4.7). As the number
of bonds is increased, two processes take place: i) the number of clusters
of connected sites increases, and ii) the average size of clusters grows. At a
certain threshold, the biggest cluster spans the whole lattice. Thus the gel
state is reached.

Figure 4.7: Lattice model of percolation [1].

Flory-Stockmayer theory of gelation∗

The simplest theory of gelation is due to Flory and Stockmayer. Consider
the Cayley tree, a radial network originating in a vertex connected to z
nearest neighbors such that each of them branch to z− 1 second-generation
vertices (Fig. 4.8). The vertices represent monomers and the bonds represent
the cross-links. Denote the probability that a bond on the Cayley tree exists
by f . If all bonds are independent, then on average each vertex of the nth
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Figure 4.8: Cayley tree of z = 4 (top, [1]). A detail of the z = 3 Cayley tree
(bottom, [1]).

generation is connected to f(z − 1) vertices of the (n+ 1)st generation [19].
If the average number of bonds connecting a vertex to its outer neighbors
is smaller than 1, then the number of different outward paths decreases in
each generation. As n→∞, the probability of finding a connected sequence
of bonds vanishes. Thus the percolation threshold specifying the minimal
bond probability needed for the existence of an infinite cluster reads

fc >
1

z − 1
. (4.93)

Below the threshold f < fc, the cluster is finite and this corresponds to the
sol. Above the threshold cluster size is infinite and this is the gel. — The
above model of gelation is rather abstract but it correctly captures the main
features of gels.

Beyond the threshold, there exists one infinitely large cluster but not all
vertices are a part of it. To quantify the degree of connectedness of the gel,



4.5. GELS∗ 85

we now estimate the fraction of bonds in the cluster; this is referred to as
the gel fraction.

The probability that a given vertex is connected to the infinite cluster
P is related to the probability that the vertex is not connected to it by a
given bond emanating from it Q. There are a total of z bonds emanating
from the vertex and the probability that the vertex is connected to one of
its neighbors but not connected via this neighbor to the infinite cluster is
fQz−1 (the power of z − 1 is due to the fact that one of the bonds of the
neighbor is connected to the vertex and the remaining z − 1 bonds do not
lead to the infinite cluster).

Now we can spell out two possible scenarios why the vertex may not
be connected to the infinite cluster via a given neighbor: i) because it is
connected to a neighbor but that neighbor is not connected to the infinite
cluster (probability fQz−1) or ii) because it is not connected to this neigbor
(probability 1− f). Thus

Q = 1− f + fQz−1. (4.94)

In the z = 3 Cayley tree, this is a quadratic equation and the solutions are
Q = 1 and Q = (1− f)/f .

The probability that a vertex is not connected to the infinite cluster is
Qz and the probability that it is connected to a given neighbor by a given
bond but not to infinity is fQz. This probability is equal to the probability
that this bond exists f less the probability that the vertex is connected to
the infinite cluster P . Thus

f − P = fQz (4.95)

and

P = f − fQz = f(1−Qz). (4.96)

For z = 3, we find that for f > fc where Q = (1 − f)/f the probability
that a vertex is a part of the infinite cluster relative to the fraction of bonds
formed is

P

f
= 1−

(
1− f
f

)3

. (4.97)

For f < fc where Q = 1 P/f = 0. Figure 4.9 shows that the gel fraction
grows rapidly as f > fc, approaching 1 as f → 1.
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Figure 4.9: Gel fraction vs. the fraction of bonds formed for z = 3 [1].

Rubber elasticity

Rubber is a polymer melt with many random cross-links such that the chains
form a macroscopic network. Locally rubber is liquid but on length scales
larger than the average separation of cross-links it has a finite shear modulus.
The classical theory of rubber elasticity rests upon the assumption of affine
deformation of the material whereby the cuboid of reference dimensions
Lx, Ly, and Lz is deformed such that its edges after the deformation are
λxLx, λyLy, and λzLz. Thus each point at (x, y, z) moves to (λxx, λyy, λzz).
The affine character of this transformation is ensured by the cross-links
which prevent a shear-free, liquid-like response of the material.

The elastic free energy can be calculated by considering a chain connect-
ing two cross-links. If one of them is chosen as the origin and the other one
is at (x, y, z), then the reference end-to-end distance is r′ =

√
x2 + y2 + z2.

After deformation, the end-to-end distance is changed and it reads r =√
λ2xx

2 + λ2yy
2 + λ2zz

2. The corresponding change of free energy within the

freely-jointed-chain model [Eq. (4.18)] is

Fchain =
3kBT

2Na2
[(
λ2x − 1

)
x2 +

(
λ2y − 1

)
y2 +

(
λ2z − 1

)
z2
]
. (4.98)

As the cross-links were introduced in the polymer melt in a stress-free state,
〈x2〉 = 〈y2〉 = 〈z2〉 = Na2/3 if we assume that the number of monomers
between all adjacent cross-links along the chain is the same (which is ad-
mittedly a rough approximation); the reference state is assumed isotropic.
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Thus

〈Fchain〉 =
kBT

2

(
λ2x + λ2y + λ2z − 3

)
. (4.99)

To obtain the free energy per unit volume, this result is now multiplied by
the number of chains between cross-links per unit volume ρp. For a uniaxial
constant-volume deformation, λz = λ and λx = λy = 1/

√
λ (so that the

total volume of the cuboid λxLx × λyLy × λzLz = LxLyLz is conserved)
giving the free energy density of the ideal rubber

frubber = ρp〈Fchain〉 =
ρpkBT

2

(
λ2 +

2

λ
− 3

)
. (4.100)

The unstressed state corresponds to λ = 1 and so the strain is given by
uzz = λ− 1. The stress can be calculated using the constitutive law

pik =
∂frubber
∂uik

(4.101)

which implies that

pzz =
∂frubber
∂uzz

=
∂frubber
∂λ

= ρpkBT

(
λ− 1

λ2

)
. (4.102)

This non-Hookean relation is obeyed by real rubbers for λ between about
50% and 150%, i.e. for strains up to 50% (Fig. 4.10).

For small deformations, Eq. (4.102) can be linearized:

pzz = ρpkBT

[
(1 + uzz)−

1

(1 + uzz)2

]
(4.103)

≈ ρpkBT [1 + uzz − (1− 2uzz)] (4.104)

≈ 3ρpkBTuzz (4.105)

so that the Young modulus is

E = 3ρpkBT (4.106)

and the shear modulus is
µ = ρpkBT. (4.107)

[Recall that E = 2µ(1 + σ) such that for an incompressible material where
σ = 1/2 E = 3µ.]

To appreciate the dependence of the Young and the shear modulus on
the density of cross-links, note that ρp is the number of chains connecting
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Figure 4.10: Stress vs. strain in rubber: Circles are experimental data for
natural rubber and solid line is the theoretical prediction [Eq. (4.102)] [2].

two neighboring cross-links per unit volume. By increasing the density of
cross-links ρp increases and thus E and µ increase too. Both E and µ can be
expressed in terms of the average molecular mass between cross-links Mx.
Note that ρp = ρ̃/Mx where ρ̃ is the mass density of monomers and so

E =
3ρkBT

Mx
(4.108)

and

µ =
ρkBT

Mx
. (4.109)



Chapter 5

Colloids

Colloids are heterogeneous systems consisting of particles of the dispersed
phase distributed within the continuous phase. Colloids are ubiquitous in
everyday life — many industrial, food, cosmetic, medical, and household
products are colloidal dispersions. For example, mayonnaise is an emulsion
of oil droplets, the primary emulsifier being egg yolk. Wall paint is a sus-
pension of latex particles in water, and car paints are carefully engineered
dispersions of pigments which provide the color, opacity, and a range of op-
tical effects such as metallic finish. As the pigments are far more costly than
the carrier continuous phase (typically a polymer solution which covers the
surface so as to protect it from environmental effects), understanding how
the colloidal dispersion is stabilized is of paramount importance.

Stability of colloidal dispersions is an essential problem in all colloidal
systems. For example, putting oil and egg yolk in a bowl alone does not make
mayonnaise. To disperse oil into small droplets, mechanical work is needed.
This increases the surface energy of oil very much because the surface area
of the dispersion is very big. Egg yolk and other additives are needed to
stabilize the emulsion and to prevent the droplets from coalescing. — Let
us estimate the total area of oil droplets in 100 g of mayonnaise. Assume
that the radius of droplets is ∼ 1 µm, that the density of oil is 1000 kg/m3,
and that the droplets constitute all of the mayonnaise volume. (This cannot
be true if all droplets are of the same size. The packing fraction of the
closest packing of identical droplets is 74%.) Then the number of droplets
is determined by V = 4πNR3/3, where V = 10−4 m3 is the total volume.
The area of droplets is

A = 4πNR2 =
3V

R
= 300 m2. (5.1)
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As oil and egg yolk (about 50% water, 15% protein, and 35% fat) are im-
miscible, mechanical work is needed to mix them. This work is stored as
the surface energy of the emulsion.

Generally speaking, both the continuous and the dispersed phase may
be gas, liquid, or solid; the only exception to this scheme is the gas-gas
combination because all gases mix. A dispersion of gas bubbles in a liq-
uid is referred to as foam (e.g., whipped cream); in wet foam, the volume
fraction of the continuous phase is considerable whereas in dry foam it is
very small. Similarly, a dispersion of gas bubbles in a solid is called a solid
foam (e.g., polyurethane foam). A dispersion of liquid droplets and small
solid particles in a gas is an aerosol (e.g., mist) and a solid aerosol (e.g.,
smoke). A dispersion of liquid droplets in another immiscible liquid is an
emulsion (e.g., mayonnaise) and a dispersion of solid particles in a liquid is
a sol (e.g., blood). A dispersion of liquid particles in a solid matrix is a gel
(e.g., butter and cheese) and solid particles in a solid matrix make a solid
sol (e.g., colored glass, porcelain).

Key to the stability of colloidal dispersions is particle size, and this
applies to many aspects of physics of colloids including sedimentation and
hydrodynamics. The best way to demonstrate why size is so important is
by comparing the order of magnitude of the typical energy scales [21]. Let
us assume that the radius of the particles is R = 1 µm, their velocity is v =
1 µm/s, the viscosity of the continuous phase is η = 10−3 Ns/m2, the density
is ρ = 1000 kg/m3, the relative density mismatch of the dispersed and the
continuous phase is ∆ρ/ρ = 10−2, and the attraction energy of two particles
in contact is Aeff = 10−20 J. These quantities are to be compared to each
other and to the thermal energy kBT = 4× 10−21 J at room temperature.

We first compare the interparticle attraction to the thermal energy:

attraction

thermal energy
=
Aeff
kBT

∼ 1. (5.2)

This tells us that colloidal dispersions are a thermal system described by
classical (because the particles are much larger than atoms and molecules)
statistical physics. Now compare the thermal energy to the work done by
viscous forces at a distance equal to particle size:

thermal energy

viscous work
=

kBT

ηvR2
∼ 1. (5.3)

This result suggests that viscous dissipation is very important. — Equally
telling is the comparison of gravitational energy (the characteristic distance
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is again particle size) and thermal energy:

potential energy

thermal energy
=

∆ρR4g

kBT
∼ 10−1. (5.4)

Thus 1 µm size density-matched colloids do not sediment very much but
in 10 µm particles sedimentation is very important. This shows that the
line between the small, thermally agitated colloidal particles and the large,
athermal granular systems is quite clear. Finally, we compare the inertial
and the viscous forces:

kinetic energy

viscous work
=
ρR3v2

ηvR2
= Re ∼ 10−6. (5.5)

The Reynolds number is very small, indicating that the hydrodynamics of
colloids is well within the Stokes flow regime.

The above estimates mean that colloids can be used as very convenient
model systems to study a range of phenomena in statistical physics — and
this can be done in fairly inexpensive tabletop experiments. The large size
of particles is an important advantage because particles can be monitored
and tracked using optical microscope.

5.1 Brownian motion∗

Characteristic for colloids is Brownian motion. Incessantly hit by the mole-
cules of the continuous phase, they move in a random fashion. This motion
was first observed by Robert Brown who studied the jiggling trajectories of
pollen in water. Since the collisions of water molecules with the particle are
random the average force vanishes yet the particle diffuse from the starting
point. The microscopic interpretation of the diffusion constant was proposed
by Einstein in one of his 1905 papers; around the same time, a similar
argument was worked out by Smoluchowski. Here we summarize Langevin’s
derivation of Einstein’s result.

Consider the equation of motion of a spherical particle experiencing vis-
cous damping described by the Stokes formula F = 6πηRv = ξv and a
random force Fr due to collisions with the continuous phase:

m
d2r

dt2
+ ξ

dr

dt
= Fr. (5.6)

As the x, y, and z directions are uncoupled and equivalent, we only need to
consider one of them:

m
d2x

dt2
+ ξ

dx

dt
= Fr, (5.7)
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where the Fr is the component of the random force along the x axis. We
multiply both sides by x, rearrange, and replace

x
d2x

dt2
by

d

dt

(
x

dx

dt

)
−
(

dx

dt

)2

. (5.8)

Thus

ξx
dx

dt
= xFr −m

d

dt

(
x

dx

dt

)
+m

(
dx

dt

)2

. (5.9)

Note that the left-hand side can be written as

ξx
dx

dt
=
ξ

2

dx2

dt
. (5.10)

Now the presence of the two independent degrees of freedom in the equation
of motion (position x and velocity v) is evident:

ξ

2

dx2

dt
= xFr −m

d

dt
(xv) +mv2. (5.11)

Upon averaging over the statistical ensemble, the products 〈xFr〉 and 〈xv〉
vanish because x and Fr are uncorrelated and so are x and v. The only
remaining nonzero terms left are

ξ

2

d〈x2〉
dt

= m〈v〉2. (5.12)

According to the equipartition theorem, the right-hand side is equal to kBT .
Upon integrating both sides over t we have

〈x2〉 =
2kBT

ξ
t (5.13)

and so

〈r2〉 =
6kBT

ξ
t = 6Dt, (5.14)

where we have defined the diffusion coefficient D. The importance of this
result is that it relates D to the microscopic viscous force ξv by the Stokes-
Einstein relation:

D =
kBT

6πηR
. (5.15)

Thus one can measure the Boltzmann constant kB by observing the Brown-
ian motion of colloids. This was first done by Perrin in 1908 who used it to
calculate the Avogadro number, thereby establishing atoms and molecules
as real rather than virtual entities.
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5.2 Interactions between colloids∗

van der Waals attraction∗

The most universal interaction between colloidal particles is the van der
Waals interaction which arises from fluctuating dipolar moments of atoms.
In a handwaving fashion, this interaction can be introduced as follows. Each
atom is electrically neutral but at any given moment it does carry an instan-
taneous electric dipole because the centers of positive and negative charge
coincide only on average. The magnitude of the instantaneous electric field
of atom 1 E1 falls off proportional to r−3, where r is the distance between
the atoms. Due to the electric field of atom 1, atom 2 is polarized and
the induced dipole moment is proportional to E1 at the location of atom 2:
p2 ∝ E1(r2). The magnitude of p2 is proportional to r−3. The energy of
the polarized atom 2 in the field of atom 1 is

Eint = −p2 ·E1(r2) ∝ r−6, (5.16)

the minus emphasizing that the interaction is attractive.
This simple argument exposes the main qualitative features of the van

der Waals interaction. It also shows that this interaction is not pairwise
additive: If there is a third atom close to atom 2, the latter is polarized both
by atom 1 and atom 3. The induced dipole moment of atom 2 depends on the
vectorial sum of electric fields of atoms 1 and 3, and thus the net interaction
is not a simple algebraic sum of pair interactions. — An additional feature
of the van der Waals interaction is that at large separations (e.g., beyond
10 nm or so) it decays ∝ r−7 due to retardation; in this regime, the finite
speed of light is important.

The van der Waals interaction between atoms translates into interac-
tion between colloidal particles. If the non-pairwise nature of atom-atom
potential is neglected and if the atoms are distributed homogeneously, the
resulting interaction between particles can be calculated fairly straightfor-
wardly. For two halfspaces separated by a gap of width h, one finds [1]

Eint = − AHA

12πh2
. (5.17)

Here A is the area of the surfaces and AH is the so-called Hamaker constant
typically ∼ 10−19 J.

A complete analysis of the van der Waals interaction between colloidal
particles covered by the Lifshitz theory is fairly complicated. Yet the mech-
anism leading to it can be appreciated by considering the so-called Casimir
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effect, the interaction mediated between parallel metal plates by zero-point
fluctuations of electromagnetic field.

5.2.1 Casimir interaction

The electromagnetic field between the plates can be represented by an en-
semble of harmonic oscillators and at T = 0, these oscillators are all in
ground state. The total energy reads

E(h) = 2
∑
k

h̄ω(k)

2
; (5.18)

The prefactor of 2 accounts for the two polarizations. Due to boundary
conditions at the plates, the transverse components of the field must vanish
at z = 0 and at z = h, which restricts the allowed values of the transverse
wavevector kz = nπ/h, where n = 0, 1, 2 . . .. The interaction energy is
computed by recognizing that the energy Eq. (5.18) contains three terms:
the bulk term is proportional to the volume between the plates, the surface
term is proportional to the area of the plates, and the rest is the interaction.
Recall that the force between the plates is defined as

F = −
(
∂E

∂h

)
V,A

. (5.19)

This definition is best visualized by thinking of the plates contained within
a large container such that as the separation between them is changed the
total volume of the container remains unchanged; in other words, as the
plates are driven closer to each other the excess volume between them is
”squeezed” into the space around the plates such that the total volume is
conserved (Fig. 5.1).

To properly extract the interaction energy from the bare energy, the bulk
term must be subtracted from Eq. (5.18); it turns out that in this particular
case the surface term is zero. The bulk term is essentially the same as
the bare energy except that the transverse wavevector is not discrete. The
interaction energy reads

Eint = h̄c
∑
k⊥

[ ∞∑
n=0

′ −
∫ ∞
0

dn

]√
k2
⊥ +

(nπ
h

)2
; (5.20)

the primed sum indicates that the n = 0 term is to be weighted by 1/2.
Summation over the in-plane components of the wavevector can be replaced



5.2. INTERACTIONS BETWEEN COLLOIDS∗ 95

Figure 5.1: Illustration of the definition of the structural force.

by an integral:
∑

k⊥
= [A/(2π)2]

∫∞
0 2πk⊥dk⊥ = (A/2π)

∫∞
0 k⊥dk⊥. Note

that the bare energy and the bulk energy both diverge but as we will show
below their difference does not.

The integral over k⊥ is calculated by introducing a damping function to
make it finite. We first rewrite each term in Eq. (5.20) by introducing a new

variable u =
√

k2
⊥ + (nπ/h)2:

E(n) =
h̄cA

2π

∫ ∞
0

k⊥dk⊥

√
k2
⊥ +

(nπ
h

)2
=
h̄cA

2π

∫ ∞
nπ/h

u2du. (5.21)

To render the integral finite, we multiply the integrand by an exponential
damping function:

E(n) =
h̄cA

2π

∫ ∞
nπ/h

u2 exp(−uδ)du (5.22)

=
h̄cA

2π

exp(−nπδ/h)

δ3

[(
nπδ

h

)2

+ 2
nπδ

h
+ 2

]
. (5.23)

The difference between the sum and the integral on n in Eq. (5.20) can
be calculated using the Euler-Maclaurin formula:

m−1∑
n=1

E(n) =

∫ m

0
E(n)dn− 1

2
[E(0) + E(m)] +

1

12

∂E

∂n

∣∣∣∣m
0

− 1

720

∂3E

∂n3

∣∣∣∣m
0

+ . . .

(5.24)
Note that for finite δ > 0 E(∞) = 0. Thus we find that

Eint =

[ ∞∑
n=0

′ −
∫ ∞
0

dn

]
En =

1

12

∂E

∂n

∣∣∣∣∞
0

− 1

720

∂3E

∂n3

∣∣∣∣∞
0

. (5.25)
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The first derivative of E(n) is −(n2π3/h3) exp(−nπδ/h) and vanishes both
at n = 0 and at n → ∞. The third derivative is proportional to (−2 +
4nπδ/h − n2π2δ2/h2)π3/h3 exp(−nπδ/h) which vanishes as n → ∞ but at
n = 0 it gives 2π3/h3. Thus the interaction energy is

Eint = −π
2h̄cA

720h3
. (5.26)

The Casimir interaction is long-range and attractive; it is proportional to
the area of the plates A and h̄ witnesses to its quantum-mechanical origin.
(Note that taking the limit δ → 0 was not at all needed.)

We note in passing that at finite temperatures, thermal fluctuations
become important. The form of the thermal Casimir interaction can be
determined on dimensional grounds — it is natural to assume that it must
be proportional to kBT rather than to h̄c. Since kBT has the dimension
of energy and not energy times length like h̄c, we conclude that up to a
multiplicative constant the thermal Casimir interaction must be given by

Eint ∼ −
kBTA

h2
. (5.27)

The main result of this scaling analysis is that the power law characteristic
for the thermal Casimir force is different from that of the quantum Casimir
force.

Electrostatic repulsion∗

The van der Waals attraction is virtually omnipresent and although it de-
cays rapidly with separation in most colloids it is quite strong at contact.
On the other hand, most colloids are charged and the electrostatic repul-
sion between them is a means of stabilizing the particles from aggregating.
Were the particles suspended in vacuum, the electrostatic repulsion would
be described by the Coulomb law. But in a sol they are surrounded by a
cloud of counterions which screen the particles’ charge and makes their in-
teraction more complicated. As the spatial distribution of the counterions
depends on the position of the particles, the screened electrostatic repulsion
is inherently non-pairwise additive.

Here we outline the simplest account of the screening known as the
Poisson-Boltzmann theory. Consider a neutral solution of positive and neg-
ative ions of charge +q and −q, respectively, in a position-dependent electric
potential Ψ. In equilibrium, the density of each ion species depends on the
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local potential and is determined by the canonical distribution

ρ±(r) = ρ0 exp

(
∓ qΨ

kBT

)
, (5.28)

where ρ0 is the density of the ions in absence of particles. The potential itself
must obey the Gauss law ∇ ·E = −∇2Ψ = ρe/(εε0), where ρe = qρ+ − qρ−
is the charge density. In a simple 1D plate-plate geometry,

εε0
d2Ψ

dz2
= qρ0

[
exp

(
qΨ

kBT

)
− exp

(
− qΨ

kBT

)]
(5.29)

or
d2Ψ

dz2
=

2qρ0
εε0

sinh

(
qΨ

kBT

)
. (5.30)

This is the Poisson-Boltzmann equation. If the potential is weak it can be
linearized and

d2Ψ

dz2
=

2q2ρ0
εε0kBT

Ψ = κ2Ψ (5.31)

is known as the Debye-Hückel approximation. Here

κ =

√
2q2ρ0
εε0kBT

(5.32)

is the inverse screening length.
Equation (5.31) can be easily integrated. In case of a single plate held

at fixed potential, potential falls off exponentially:

Ψ(z) = Ψ0 exp(−κz). (5.33)

The exponentially decaying potential means that the density of counterions
at the plate is increased relative to bulk whereas the density of coions is
decreased (Fig. 5.2). This structure is often referred to as the double layer.
As the ions have a finite size, the plate is effectively covered by a layer of
counterions, on top of which is a (less compact) layer of coions (Fig. 5.3).

In case of weak potentials and large separations, the electrostatic inter-
action of two parallel plates of identical potential is short-range

Eint ∝ exp(−κh). (5.34)

Note that the range of the interaction depends on the concentration of ions.
Adding salt to the solution increases the ion concentration, thereby decreas-
ing the screening length κ−1. This reduces the electrostatic repulsion be-
tween surfaces. — In the above illustration, we assumed that the potential
on colloidal particles is fixed. Usually, the particles are characterized by a
fixed charge rather than by fixed potential.
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Figure 5.2: Screened electric potential at a plate held at fixed potential and
the densities of counterions and coions [1].

Figure 5.3: Schematic of the electric double layer at a charged plate.

Depletion attraction∗

Addition of polymers to a colloidal dispersion may generate either repulsive
or attractive short-range forces. If the polymers adsorb on the colloids, the
grafted polymer brushes keep the particles apart, preventing aggregation
(Fig. 5.4). The range of the brush-brush repulsion is related to the degree of
polymerization. The stabilization of colloids by adsorbed polymers happens
in polymers in good solvents so that the chains themselves are not attracted
to each other. In a poor solvent, polymer-polymer contacts are preferred
and this leads to an attraction between particles.

If the polymers do not adsorb on the colloids, they give rise to a uni-
versal and chemistry-independent entropic interaction between the particles
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Figure 5.4: Polymers that adsorb on colloidal particles form brushes which
prevent the colloids from aggregating [1].

known as the depletion attraction. First studied theoretically by Asakura
and Oosawa in 1950s, the depletion attraction is caused by the overlap of the
depletion zones around two nearby particles. In case of two parallel plates
of area A, immersed in a suspension of polymer coils of diameter σ (treated
as hard spheres for simplicity) and separated by more than σ, the excluded
volume around each plate consists of a layer of thickness σ/2 and area A on
either side of the plate. In the limit of very small density of polymer coils,
the configuration integral reads

ZN (h > σ) = (V − Vexcl)N = (V − 2σA)N , (5.35)

where we have included the total excluded volume of both depletion zones.
At separations h smaller than σ the depletion zones between the plates over-
lap and the total excluded volume is decreased (Fig. 5.5). The configuration
integral is

ZN (h < σ) = [V − (σ + h)A]N . (5.36)

The separation-dependent part of the free energy of the coils is given by
F (h) = −kBT lnZN and like in the analysis of Casimir interaction, we define
the interaction free energy relative to the reference state at large separations:

Fdepl = F (h < σ)− F (h > σ) = −NkBT ln
V − (σ + h)A

V − 2σA
. (5.37)
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Figure 5.5: Depletion interaction between parallel plates. Shaded areas are
the exclusion zones at large plate-plate separation h > σ (a) and at small
h < σ (b).

As V � Aσ,Ah, this can be approximated by

Fdepl = −NkBT ln

(
1− (h− σ)A

V − 2σA

)
(5.38)

≈ −NkBT
(σ − h)A

V
= −ρpAkBT (σ − h). (5.39)

Here ρp = N/V is the density of the polymer coils. — This result shows
that the depletion interaction is attractive, proportional to the area of plates
as expected, entropic, and to lowest order proportional to the density of
polymers. The depletion force F = −ρpAkBT is independent of separation
for h < σ and vanishes at h > σ, and can be interpreted as the osmotic
pressure of the finite-size particles. At separations larger than σ, the polymer
coils can enter the gap between the plates and the osmotic pressures on either
side of each plate are balanced. On the other hand, for h < σ the osmotic
pressure within the gap is 0, and the outside osmotic pressure pushes the
plates together.

In a similar fashion, one can calculate the interaction energy for the
sphere-sphere geometry. Like in the case of plates, the range of interaction
is given by σ and for 2R < h < 2R + σ (R being the radius of the large
spheres) the result is

Fdepl = −π
4
ρpkBT (2R+ σ − h)2(2R+ σ + h/2). (5.40)
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In a more complete theory of depletion interaction, one must account
for the finite density of the polymers. At finite density, the structure of
the fluid of small particles within the gap is important. As the density is
increased the particles become increasingly more positionally ordered and
the depletion interaction develops oscillations.

We also stress that the depletion interaction does not act only between
the colloids but also between the colloids and a substrate. It is not hard to
see that the overlap of depletion zones of a spherical particle and a flat sub-
strate is larger than that of two spherical particles (Fig. 5.6). Moreover, on
a grooved substrate the attraction is largest within the grooves and smallest
on the ridges.

Figure 5.6: Depletion attraction also gives rise to attraction of colloids to
substrates. On a grooved substrate, particles are driven to corners and they
avoid ridges (a) [23]. A patterned substrate can serve as a template (b, c).

Derjaguin approximation

In many cases, the interaction energy is most easily evaluated in the plate-
plate geometry but experimentally the sphere-sphere and crossed-cylinder
geometries are far more interesting: The former because it is characteristic
of typical colloids and the latter because it is much more convenient for
direct force measurements than the plate-plate geometry where it is difficult
to ensure that the plates are really parallel. The interaction potential in the
plate-plate geometry can be related to the force between two spheres using
the Derjaguin approximation valid for any force law provided that the range
of the interaction is short compared to sphere diameter, and it can be used
for van der Waals, electrostatic, and depletion interactions.

The Derjaguin approximation states that

F(h) ≈ 2π
R1R2

R1 +R2

Eint(h)

A
, (5.41)
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where F(h) is the force between spheres of radii R1 and R2 separated by a
gap of width h and Eint(h) is the interaction energy of two plates h apart.

5.3 Derjaguin-Landau-Verwey-Overbeek theory∗

These interactions are essential for the understanding of colloidal stability.
The van der Waals interaction alone would cause the particles to stick to-
gether. The structure of thus formed aggregates is determined by the kinet-
ics of their formation. The aggregates themselves are not in thermodynamic
equilibrium and typically consist of branching fractal clusters (Fig. 5.7). In
the diffusion-limited aggregation, particles stick to each other upon contact
so that as soon as a new particle touches an existing cluster it becomes im-
mobile. This prevents them from reaching the minimal-energy configuration.
If the sticking rate is not determined by diffusion, one speaks of reaction-
limited aggregation. In this regime particles have ample opportunities to
explore a given local neighborhood.

Figure 5.7: Disordered colloidal aggregate typical for diffusion-limited ag-
gregation. Electron micrograph of silver colloidal particles [24].

To prevent the formation of the non-equilibrium aggregates, colloids
must be stabilized. This can be done either by covering the particles by
a polymer brush or by electrostatic stabilization. The classical theory of
colloidal stabilization is due to Derjaguin, Landau, Verwey, and Overbeek
(DLVO). In this theory, the total pair potential between particles consists
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of the van der Waals attraction and the electrostatic repulsion. The ab-
solute minimum of the interaction is at close contact (Fig. 5.8) but if the
electrostatic potential is not screened the energy barrier due to repulsion
is very high compared to kBT . As salt is added and the screening length
is decreased, the electrostatic repulsion is less and less prominent and a
secondary minimum develops at a finite separation. If the depth of this
minimum is ∼ kBT , particles behave like a thermal ensemble, exploring all
of the phase space. If the screening length is further decreased, the barrier
separating the absolute minimum at contact vanishes and the colloids enter
the aggregation regime.

Figure 5.8: DVLO theory of colloidal stability: Electrolyte concentration is
largest in curve a and smallest in curve c [9].

5.4 Phase diagram of hard-sphere colloids

Stabilized colloids readily form a range of ordered and disordered phases.
The paradigmatic hard-sphere colloidal system is fluid at small packing frac-
tions and forms an entropic FCC crystal (Fig. 5.9). The phase diagram
depends only on packing fraction:

fluid ←→
0.494

coexistence ←→
0.545

FCC crystal

Theoretically, FCC crystal is stable up to a packing fraction of 0.740 where
spheres reach close packing. In experiments and in simulations a glass (=
structurally disordered arrested) phase is found very often at packing frac-
tions between 0.58 and 0.644; packing fraction of 0.644 corresponds to the
so-called random close-packed structure.
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Figure 5.9: Colloidal hard-sphere fluid (left) and FCC crystal (right; A. van
Blaaderen).

The fluid-FCC phase transition and the stability of the FCC crystal
can be interpreted in terms of excluded volume. The free energy of the
fluid phase can be estimated using the Carnahan-Starling equation of state
[Eq. (2.93)]. Note that

p = −
(
∂F

∂V

)
T,N

=
ρ2

N

(
∂F

∂ρ

)
T,N

(5.42)

which can be integrated to calculate the excess free energy

F exl = NkBT

∫ ρ

0

dρ

ρ

βpex

ρ
= NkBT

∫ η

0

dη

η

[
1 + η + η2 − η3

(1− η)3
− 1

]
(5.43)

= NkBT
4η − 3η2

(1− η)2
. (5.44)

The excess chemical potential is given by βµexl = (F ex + pV )/(NkBT ) =
F ex/(NkBT ) + βpex/ρ or

βµexl =
1 + 5η − 6η2 + 2η3

(1− η)3
(5.45)

and by adding it to the total chemical potential is

βµl = ln η − 1 + βµexl = ln η +
8η − 9η2 + 3η3

(1− η)3
(5.46)

[On inserting Eq. (2.16), we have dropped the additive constant 3 ln Λ.]
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Now we estimate the free energy of the FCC crystal. In the cell model, we
assume that each particle is confined to the cage formed by its neighbors,

and its free volume is ∼
(
V 1/3 − V 1/3

cp

)3
. Here the numerical prefactor

depends on the shape of the cell (i.e., on the symmetry of the lattice), V is
the volume of the unit cell containing 1 particle so that the packing fraction
η = πσ3/(6V ), and Vcp is the volume of the unit cell at close packing. [An
illustration: In 2D square lattice, the unit cell is a square of size a− σ and
the free 2D volume is (a− σ)2 (Fig. 5.10).] The free energy then reads

Figure 5.10: 2D free volume in square lattice: Solid line is the ”cage” formed
by the neighbors, and the center of mass of the reference particle may explore
the dark area in its center. This is the 2D free volume.

Fs = −NkBT lnVfree = −3NkBT ln
(
V 1/3 − V 1/3

cp

)
+ const. (5.47)

where the additive constant depends on the symmetry of the lattice in ques-
tion. The pressure is

ps =
NkBT

V
[
1− (Vcp/V )1/3

] (5.48)

so that
βps
ρ

=
1

1− (η/ηcp)1/3
≈ 3

1− η/ηcp
, (5.49)

where η = πσ3/V and ηcp = πσ3/Vcp. In the last step, we have used an
approximation suitable for large packing fractions η → ηcp which gives upon
integration

Fs ≈ NkBT
[
3 ln

η

1− η/ηcp
+ 2.1178 . . .

]
; (5.50)
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the numerical constant corresponds to the FCC lattice where ηcp = 0.74.
Now we can calculate the chemical potential

βµs ≈ 3 ln
η

1− η/ηcp
+

3

1− η/ηcp
+ 2.1178 . . . (5.51)

To determine the location of the phase transition, we plot the chemical
potentials of the hard-sphere liquid and FCC solid [Eqs. (5.46) and (5.51)]
against their respective pressures [Eqs. (2.93) and (5.49)]; these equations
need to be multiplied by η = πσ3ρ/6 so that their left-hand sides do not
include packing fraction. The result is shown in Fig. 5.11 and at the tran-
sition, both the chemical potentials and the pressures must coincide. This
happens at ηl = 0.491 and ηs = 0.541 — very close to the predictions of
more sophisticated theories.
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6
10

12

14

16

18

20
ΒΜ

Figure 5.11: Chemical potentials of hard-sphere liquid (blue) and FCC crys-
tal (magenta). Beyond πσ3βp/6 ≈ 6.08, the FCC crystal is stable.

This analysis of the phase diagram of hard spheres is just the sim-
plest example of the phase behavior of colloids. Hard colloidal particles of
anisotropic shape (rods and platelets) readily form liquid-crystalline phases;
some of this behavior was covered in Ch. 3. In soft colloids, the condensed
part of the phase diagram may contain more complex lattices than FCC.



Chapter 6

Amphiphiles

Amphiphile molecules consist of a polar hydrophillic part, typically a head,
and an apolar hydrophobic part, typically an alkyl chain. When dispersed
in water, their dual nature causes the amphiphiles to self-organize such that
the polar parts face water (thereby reducing the surface tension of water)
whereas the apolar parts orient away from water. Many substances exhibit
amphiphilic behavior — the membranes of animal cells and cell organelles
are based on phospholipids, fatty acids consisting of a polar head, usually
a phosphoglyceride, and two hydrophobic alkyl chains of 10 to 20 C atoms.
Amphiphilic behavior is also seen in diblock copolymers, polymers consisting
of incompatible blocks joined by a covalent bond and dispersed in a solvent
compatible with one block but not with the other.

When dispersed in water, amphiphiles self-assemble in various ways de-
pending on the shape of the molecules. The key geometrical parameter is
the ratio

v

lca0
, (6.1)

where v is the volume of the molecules, lc is the length of the apolar chain,
and a0 is the area per headgroup. If the amphiphile has a single short
tail and if the area of the head is large, then the amphiphile looks like an
ice-cream cone. If

v

lca0
≤ 1

3
, (6.2)

amphiphiles will pack into spherical micelles (Fig. 6.1). In truncated-cone
amphiphiles

1

3
≤ v

lca0
≤ 1

2
, (6.3)
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Figure 6.1: Morphologies of amphiphile self-assemblies in water [20]. For
v/(lca0) > 1 amphiphiles form inverted cylindrical and micellar structures.
Also possible are more complex bicontinuous structures.

and they form cylindrical micelles. For

1

2
≤ v

lca0
≤ 1 (6.4)

the amphiphiles self-organize in bilayers and lamellar phases, whereas for

v

lca0
> 1 (6.5)

they form inverted micelles, which can be either cylindrical or spherical.
This is how the shape of the phospholipids, which is controlled by their
chemical structure, generates the curvature of phospholipid self-assemblies.



6.1. AMPHIPHILE AGGREGATION∗ 109

6.1 Amphiphile aggregation∗

In water suspension, amphiphiles will form a given type of aggregate only
if the concentration is large enough. In equilibrium, the chemical potential
of dissolved single molecules must be equal to the chemical potential of
molecules in an aggregate. The critical concentration depends on the shape
of amphiphiles, and so does the size distribution of the aggregates.

Let us derive the equilibrium mole fraction of amphiphiles in aggregates
containing N molecules. The total number of amphiphiles in N -aggregates
is NN , and the number of N -aggregates is nN = NN/N. The chemical
potential of N -aggregates is

µ̃N = µ̃0,ρN + kBT ln ρN , (6.6)

where ρN = nN/V is the (number) density of N -aggregates. This expression
can be rewritten in terms of the mole fraction of the N -aggregates:

XN =
NN

Ntot
, (6.7)

where Ntot = Nw+N is the total number of water and amphiphile molecules;
if the concentration of amphiphiles is small, Ntot ≈ Nw. Note that

∑
N XN

equals the total mole fraction of amphiphiles X 6= 1. — Hence

XN =
NnN
Ntot

=
NnN/V

Ntot/V
≈ NρN

ρw
(6.8)

so that ρN ≈ ρwXN/N

µ̃N = µ̃0N + kBT ln

(
XN

N

)
, (6.9)

where µ̃0N is the reference chemical potential of the whole N -aggregate. The
chemical potential per amphiphile in the N -aggregate is

µN =
µ̃

N
= µ0N +

kBT

N
ln

(
XN

N

)
. (6.10)

In equilibrium, µN must be equal to µ1, the chemical potential of dissolved
amphiphiles:

µ0N +
kBT

N
ln

(
XN

N

)
= µ01 + kBT ln (X1) . (6.11)
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Figure 6.2: Spherical micelles: In micelles that are either too small (N < N0)
or too big (N > N0), amphiphile chemical potential is larger than in optimal
micelles [1].

Upon rearranging we obtain the law-of-mass action

XN/N

XN
1

= exp

(
N(µ01 − µ0N )

kBT

)
(6.12)

and

XN = N

[
X1 exp

(
µ01 − µ0N
kBT

)]N
. (6.13)

This important result shows that if µ01 < µ0N , most amphiphiles are dissolved
and XN>1 will be small whereas if µ01 > µ0N aggregates are readily formed.
Equation (6.13) will now be used to derive the distribution of aggregate size
for spherical micellar, cylindrical micellar, and bilayer aggregates.

Spherical micelles∗

At a given headgroup area a0 and tail length lc, the optimal radius of a
spherical micelle is lc and the optimal micelle area is 4πl2c so that the optimal
number of amphiphiles is N0 = 4πl2c/a

2
0 (Fig. 6.2). In micelles that are too

small, the area per headgroup is too big and in micelles that are too big
some of the amphiphiles invariably end up buried in the hydrophobic core.
Thus we can assume that the chemical potential has a minimum at N0:

µ0N = µ0N0
+ Λ(N −N0)

2. (6.14)
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Upon inserting this result into Eq. (6.13) and a slight rearrangement, we
find that the distribution of micelle size is almost Gaussian:

XN = N

[
XN0

N0
exp

(
−N0Λ(N −N0)

2

kBT

)]N/N0

. (6.15)

In case that the minimum of Eq. (6.14) is deep compared to kBT , the
only relevant states of the amphiphiles are the optimal micelles and dissolved
amphiphiles. Let us compare their respective concentrations XN0 and X1:

XN0 = N0

[
X1 exp

(
µ01 − µ0N0

kBT

)]N0

. (6.16)

If the concentration of dissolved amphiphiles is smaller than the critical
micelle concentration

Xc = exp

(
−
µ01 − µ0N0

kBT

)
, (6.17)

then virtually all amphiphiles are dissolved and the concentration of micelles
vanishes. [Note that the total concentration of amphiphiles is X1+XN0 .] On
the other hand, for X1 > Xc the concentration of amphiphiles self-organized
in the micelles grows fairly rapidly whereas the concentration of dissolved
amphiphiles levels off at a constant value.

Cylindrical micelles

Amphiphiles with v/(lca0) between 1/3 and 1/2 form cylindrical micelles
which are qualitatively different from the spherical micelles in that there is
no preferred size. Most amphiphiles in cylindrical pack consistently with
their truncated-cone shape, the only exception being the two hemispherical
caps which cost an extra energy ∆E conveniently expressed in terms of the
thermal energy αkBT , α being a numerical constant. The average chemical
potential per molecule reads

µ0N = µ∞ +
αkBT

N
, (6.18)

where µ∞ is the chemical potential in an infinite micelle. For simplicity, we
extend the validity of this formula down to N = 1 corresponding to dissolved
micelles. By inserting it in Eq. (6.13) we find that

XN = N [X1 exp (α(1− 1/N))]N = N [X1 expα]N exp(−α). (6.19)
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total concentration

X1, XN

Figure 6.3: Dependence of the concentration of spherical micelles (solid line)
and dissolved molecules (dashed line) on the overall concentration of am-
phiphiles. Below critical micelle concentration, micelles are absent whereas
beyond it the concentration of dissolved molecules saturates.

XN is finite for N →∞ only if X1 reaches ∼ exp(−α); this corresponds to
the critical micelle concentration.

Now we can derive the distribution of micelle size. First we calcu-
late the sum of concentrations of all micelles. Note that

∑∞
N=1Ny

N =∑∞
N=0Ny

N = y(d/dy)
∑∞

N=0 y
N = y/(1− y)2. Thus

Xmicelles =

∞∑
N=2

XN =

∞∑
N=1

XN −X1 =
X1

(1−X1 expα)2
−X1. (6.20)

We have learned from the analysis of the formation of spherical micelles
that beyond the critical micelle concentration where Xmicelles expα� 1, X1

saturates at exp(−α). So we write X1 = exp(−α)− b and keep the lowest-
order term in b to find that well beyond the critical micelle concentration
b = 1/

√
Xmicelles exp 3α and

X1 ≈
(

1− 1√
Xmicelles expα

)
exp(−α). (6.21)

Hence

XN = N

(
1− 1√

Xmicelles expα

)N
exp(−α). (6.22)

Unlike in spherical micelles, the size distribution of cylindrical micelles is
very broad, characterized by a long tail (Fig. 6.4). The distribution peaks
at Nmax =

√
Xmicelles expα [1].
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N

XN

Figure 6.4: Size distribution of cylindrical micelles.

Bilayer membranes

Amphiphiles of cylindrical shape self-organize in bilayers and their aggre-
gation behavior is qualitatively different from that of micelle-forming am-
phiphiles. Consider a finite bilayer patch — a disk of N molecules of area
∼ N and radius ∼

√
N . In such a patch, all amphiphiles except those in the

rim are packed optimally consistent with their cylindrical shape. The num-
ber of sub optimally packed molecules is proportional to the length of the
approximately hemicylindrical rim, i.e., ∼

√
N . Thus the average chemical

potential per molecule is

µ0N = µ∞ +
αkBT√
N

, (6.23)

which means that

XN = N
[
X1 exp

(
α(1− 1/

√
N)
)]N

= N [X1 expα]N exp(−αN1/2).

(6.24)
At large N , the number of finite disklike patches decreases exponentially
because of the factor exp(−αN1/2), which implies that the dissolved am-
phiphiles must be in equilibrium with an infinite bilayer membrane.

This can be seen as follows. Assume that a finite planar membrane
patch is in equilibrium with isolated dissolved amphiphiles as well as with
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an infinite membrane. In this case,

µ∞ = µ1 = µN (6.25)

so that

µ∞ = µ01 + kBT lnX1 (6.26)

and

µ∞ = µ0N +
kBT

N
ln
X1

N
. (6.27)

These two equations can be inverted to give

X1 = exp

(
−µ

0
1 − µ∞
kBT

)
(6.28)

and

XN = N exp

(
−
N(µ0N − µ∞)

kBT

)
= N exp

(
−αN1/2

)
. (6.29)

In the last step we used Eq. (6.23).

Now the total concentration of amphiphiles in all finite patches including
isolated dissolved molecules is

X = X1 +
∞∑
N=2

XN = exp

(
−µ

0
1 − µ∞
kBT

)
+
∞∑
N=2

N exp(−αN1/2) (6.30)

Note that the sum converged to a finite value so that X itself is finite. Thus
as more amphiphiles are added to the solution, they must be included in the
infinite membrane.

In case of cylindrical micelles, the situation is qualitatively different.
Here

X = X1 +

∞∑
N=2

N exp(−α) (6.31)

which does not converge. We conclude that finite cylindrical micelles cannot
coexist with infinite cylindrical micelle.

A large membrane may be closed so as to eliminate the energy cost of
the rim. Closed membranes are referred to as vesicles, and vesicle shape is
determined by membrane elasticity.
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6.2 Membrane elasticity

Much like in the case of surface energy of simple liquids, the microscopic in-
termolecular interactions between amphiphiles organized in a bilayer mem-
brane give rise to the membrane stretching and bending energy. Here we
derive this energy for a symmetric membrane consisting of monolayer leaflets
each containing N molecules. The central quantity of interest is the average
free energy per molecule, which depends on the deviation of the membrane
area from the equilibrium area and on the deviation of the membrane shape
from the flat undeformed shape.

The arguments presented below are based on three assumptions:

• Monolayers are 2D fluids This implies that the molecules can rear-
range within the monolayers so as to minimize their mutual interaction
energy, which means that the energy depends only on the density and
not on the exact in-plane positional order like in crystalline mem-
branes. Thus the free energy per molecule can be expressed in terms
of the average membrane area per amphiphile headgroup a.

• Membrane thickness is constant The length of tails does not
change much as the membrane is stretched or bent, and thus the dis-
tance between the two amphiphile-water interfaces remains constant.
Specifically, h = 2l where l is the length of amphiphiles.

• Harmonic expansion For small deformations, the area per head-
group can be expanded in terms of relative membrane area change
and membrane curvature.

The total free energy consists of i) surface energy associated with the
headgroup-water interface, ii) headgroup free energy associated with the
interaction among headgroups, and iii) the free energy of tails:

F = Fs + Fh + Ft. (6.32)

Per molecule, the free energy reads

f(a, h) =
F (N, a, h)

2N
. (6.33)

Each of the three terms in f(a, h) is characterized by a separate dependence
on area per headgroup a.
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The bilayer exists because the apolar tails of the amphiphiles do not
mix with water. Thus we may expect that there is an energy cost for in-
creasing the area of the amphiphile-water interface. The surface energy per
headgroup is described by

fs = γa. (6.34)

Typical values of the surface tension are γ ≈ 0.05 J/m2 or about 0.1kBT/nm2.
The interaction among headgroups is more complicated and includes

electrostatic repulsion due to the polar nature of the headgroups and steric
repulsion between them. Both of these terms can be modeled by [26]

fh =
W

a
, (6.35)

where W is a constant.
Apart from the head-head repulsion, amphiphiles repel each other be-

cause of the interaction of their tails. When pushed against each other,
their tails must be stretched such or else the volume per amphiphile v = al
would not be conserved. This increases the energy of the tails and if we
assume that the tails can be described by freely-jointed polymer chains of
equilibrium length lc ∝ n1/2 and volume v = al ∝ n, we can write

ft ∝
(
l

lc

)2

∝ v2

a2n
∝ n

a2
. (6.36)

A detailed analysis of the tail-tail repulsion and the ensuing lateral pres-
sure within the membrane is quite complicated [26] and inessential for this
discussion.

Irrespective of the exact form of the cohesive and the repulsive terms in
the free energy, its dependence on the area per headgroup around equilib-
rium is harmonic (Fig. 6.5):

f(a, h) = f0 +
1

2

d2f

da2
(a− a0)2 (6.37)

Area compressibility

We first calculate the energy penalty for membrane stretching or compres-
sion. In this case, the area of headgroup of all molecules changes by the
same amount and the variation of free energy is given by

δf =
1

2

∂2f

∂a2
(a− a0)2 =

1

2
κAa0

(
δa

a0

)2

. (6.38)
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a

free energy

Figure 6.5: Free energy of amphiphiles in a bilayer: Surface energy (blue),
head-head repulsion (magenta), and tail-tail repulsion (tan). Around equi-
librium at a = a0, the total free enegy (thick green line) is a harmonic
function of a− a0.

The area compressibility modulus κA is defined as a0(∂
2f/∂a2)a0 . As the

surface free energy is linear in a it does not contribute to κA which turns out
to be dominated by the tail term [26]; typical values are κA ∼ 50kBT/nm2.

Bending elasticity

Let us now see how the free energy of a bilayer changes upon bending. In this
case, the variations of the area per headgroup of molecules in monolayers
A and B are not the same. To derive the functional form of the bending
energy, we need to know how does the area of the monolayers depend on the
shape of the membrane; more precisely, how does it depend on its curvature.

The easiest way to introduce the curvature of a surface is by relying on
the curvature of planar curves

C = n · ∂t

∂s
= n · ∂

2r

∂s2
. (6.39)

Here r(s) is the location of a point on a curve parametrized by the arclength
s, and t(s) is the tangent. On a surface, we can move along many paths
which are planar curves. For each of these paths, the curvature can be
defined by Eq. (6.39). Obviously, the curvature of any path is specific for
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that path but it also reflects the shape of the surface. It turns out that for
any surface there exist two perpendicular paths such that the curvatures
along these paths are extremal; one is the smallest of all curvatures and
the other one is the largest. These two curvatures are called the principal
curvatures and denoted by C1 and C2. In a cylinder of radius R, C1 = 0
and C2 = 1/R.

Curvature can be either positive or negative. Conventionally, we use the
outward normal and so the curvature of a filled cylinder is positive and the
curvature of a cylindrical hole is negative (in both cases, we talk about the
curvature in the plane normal to cylinder axis). In a sphere, C1 = C2 = 1/R.
For a saddle-shaped surface, C1 = 1/R1 and C2 = −1/R2.

Instead of describing the local curvature with the principal curvatures,
we can use the mean curvature

H =
1

2
(C1 + C2) (6.40)

and the Gaussian curvature

K = C1C2. (6.41)

For a cylinder, H = 1/2R and K = 0. For a sphere, H = 1/R and K =
1/R2, For a saddle, H = 0 and K = −1/R2.

Area of curved surface

Imagine a straight rod of length l0 and thickness d and bend it such that it
assumes the shape of a circular arc of radius R and angle φ = l0/R. In case
of pure bend, the midplane is the neutral plane and remains unstretched.
In a local coordinate system where the z axis points in the radial direction
and z = 0 is the neutral plane, parts of rod at z > 0 are stretched and those
at z < 0 are compressed:

l(z) = φ(R+ z) =
l0
R

(R+ z) = l0

(
1 +

z

R

)
. (6.42)

For a rectangular plate of length l0 and width w bent in a cylindrical shape,
we have

A(z) = wφ(R+ z) = w
l0
R

(R+ z) = A0

(
1 +

z

R

)
. (6.43)

Here A0 = A(z = 0) = wl0 is the area of the plate. We recognize that
C1 = 1/R is one of the principal curvatures; the other one is 0. We conclude
that

A(z) = A(0) (1 + C1z) . (6.44)
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If the plate were also bent in the other direction such that it would form a
cap- or a saddle-like surface, we would then have

A(z) = A(0) [1 + C1z + C2z] = A(0) [1 + (C1 + C2)z] . (6.45)

But this is not the end of the story. Consider a sphere of radius R; its area is
4πR2. Now increase its radius by a small amount z: The area of the larger
sphere is

A(z) = 4π(R+ z)2 = 4π(R2 + 2rz + z2) (6.46)

= 4πR2(1 + 2z/R+ z2/R2) = A(0)(1 + 2z/R+ z2/R2).(6.47)

Knowing that for a sphere C1 = C2 = 1/R, we recognize the second term in
the bracket as (C1 + C2)z. The third term is C1C2z

2. Thus we are led to
conjecture that the complete formula for A(z) for an arbitrary surface is

A(z) = A(0) [1 + C1z + C2z] = A(0)
[
1 + (C1 + C2)z + C1C2z

2
]
. (6.48)

A mathematical aside: From Eq. (6.48) we see that the difference of
the areas of two parallel surfaces A(0) and A(dz) that are separated by an
infinitesimal dz is

dA = A(dz)−A(0) = A(0)(C1 + C2)dz (6.49)

(We neglected the second-order term in dz.) Now A(0)dz = dV is the
volume of the shell between the two surfaces and so

∂A

∂V
= C1 + C2 = 2H. (6.50)

Here H = (C1+C2)/2 is the mean curvature. — For a sphere, A = 4πR2 and
V = 4πR3/3 so R = (3V/4π)1/3 and A = 4π(3V/4π)2/3. Thus ∂A/∂V =
4π(2/3)(3V/4π)−1/3(3V/4π) = 2(3V/4π)−1/3 = 2/R = 2H because in a
sphere, H = R−1.

In a bilayer that is neither stretched nor compressed and is characterized
by principal curvatures C1 and C2 measured in the midplane, the area of the
neutral plane at z = 0, A(0), is the same as the area of a flat bilayer. But
the areas of the top (A) and bottom (B) surface of the bilayer are changed
and this affects the free energy of the bilayer. In a symmetric bilayer with
N amphiphiles in either monolayer, the average free energy per amphiphile
is

F

2N
=

1

2
(fA + fB) . (6.51)
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The headgroup area of amphiphiles in the top monolayer is

aA =
A(z = h/2)

N
= a(z = h/2). (6.52)

According to Eq. (6.48), A(z = h/2) = A(0)
[
1 + (C1 + C2)h/2 + C1C2h

2/4
]

and we have

aA = a0

[
1 + (C1 + C2)

h

2
+ C1C2

h2

4

]
(6.53)

where a0 = A(0)/N . Similarly,

aB =
A(z = −h/2)

N
= a(z = −h/2) (6.54)

and

aB = a0

[
1− (C1 + C2)

h

2
+ C1C2

h2

4

]
. (6.55)

The average energy per amphiphile in the top and bottom monolayer
depends on aA and on aB, respectively. For simplicity, let us consider only
the surface tension and the head-head repulsion:

f =
1

2

[
γ(aA + aB) +W

(
1

aA
+

1

aB

)]
. (6.56)

The variation of f due to curvature is given by

δf =
1

2

(
γa0

[
(C1 + C2)

h

2
+ C1C2

h2

4
− (C1 + C2)

h

2
+ C1C2

h2

4

]
+
W

a0

{
−(C1 + C2)

h

2
+
[
(C1 + C2)

2 − C1C2

] h2
4

+(C1 + C2)
h

2
+
[
(C1 + C2)

2 − C1C2

] h2
4

})
(6.57)

=
1

2

Wh2

2a0
(C1 + C2)

2 +
1

2

(
γa0h

2

2
− Wh2

2a0

)
C1C2. (6.58)

Note that in expanding aA and aB in the head-head repulsion, one has to
keep all second-order terms:

1

1± uq + vq2
≈ 1∓ uq + (u2 − v)q2. (6.59)
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Bending energy∗

The importance of the above result Eq. (6.58) is that it contains both a term
proportional to (C1+C2)

2 and a term proportional to C1C2. This conclusion
is not altered by including the tail-tail repulsion and the functional form
of the elastic energy remains unchanged. Within a more general theory
where the numbers of amphiphiles in the monolayers are not necessarily
identical (so that the top and bottom monolayers contain χ2N and (1 −
χ)2N molecules, respectively), the two bending moduli are not the same
and the functional form of the membrane bending energy per unit area
fb = δF/[Na0] is

fb =
1

2
κb (C1 + C2)

2 + κC1C2 +
1

2
λ

(
χ− 1

2

)2

+ ω

(
χ− 1

2

)
(C1 + C2) .

(6.60)
Here κb ∝ h2 is the bending modulus, κ ∝ h2 is the Gaussian (saddle-splay)
bending modulus, λ is the modulus measuring the energy cost of a deviation
from a symmetric membrane with identical numbers of molecules in each
monolayer (χ = 1/2), and ω is the strength of the coupling between the
mean curvature and membrane asymmetry assumed linear in both C1 +C2

and χ. This is the central result that we wanted to obtain. Both κb and κ
are typically around 10−19 J.

Let us first estimate λ, which corresponds to the energy cost of a variation
of χ at constant headgroup area in a planar bilayer. We write χ as

χ =
a0

2aA
(6.61)

so that for aA = a0 we have χ = 1/2. Now we connect the variation of χ to
the variation of aA:

δχ = χ− 1/2 = − a0
2a2A

δaA. (6.62)

In equilibrium, aA = a0 and so

δχ = −δaA
2a0

. (6.63)

This gives

δF

Na0
=

1

2
λ

(
χ− 1

2

)2

=
1

2
λ

1

4

(
δa

a0

)2

=
1

2
κA

(
δa

a0

)2

(6.64)

In the last equality, we have used the area compressibility formula [Eq. (6.38)].
Thus λ = 4κA.
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Exchange of lipid molecules between monolayers

If the headgroups of the two monolayers are polymerized, then they cannot
jump from one monolayer to the other as a response of the bilayer to stress
due to curvature. This is the limit of blocked exchange. In the opposite
limit, exchange is possible and in this case a finite C1 + C2 will induce a
deviation of χ from its equilibrium value of χ = 1/2 in a flat membrane. To
first order, we can assume that χ− 1/2 is proportional to C1 + C2:

χ− 1

2
= ηd(C1 + C2). (6.65)

η is the coupling parameter and d has been inserted to make η dimensionless.
Using this approximation, we can rewrite the elastic energy density

[Eq. (6.60)] as

fb =
1

2
κb(C1 + C2)

2 + κC1C2 +
1

2
λη2d2(C1 + C2)

2 + ωηd(C1 + C2)
2

=
1

2

(
κb + λη2d2 + 2ωηd

)
(C1 + C2)

2 + κC1C2

=
1

2
κ(C1 + C2)

2 + κC1C2 (6.66)

In the last line, we have introduced the rescaled bending modulus

κ = κb + λη2d2 + 2ωηd. (6.67)

In case of free exchange between monolayers, any bending is compensated
for by an adjusted χ so as to minimize the bending modulus. By differenti-
ating κ with respect to η we find that ηmin = −ω/λd and

κmin = κb −
ω2

λ
(6.68)

The opposite extreme is blocked exchange. In this case, there is no cou-
pling between χ and C+ and η = 0 so that κ = κb.

Spontaneous curvature

For some membranes, a planar bilayer is not the equilibrium state. To
model bilayers where the minimal elastic energy corresponds to a state with
C+ 6= 0, we extend Eq. (6.66) by a term of the form −κC0C+. C0 is a
phenomenological parameter. So we have

fb =
1

2
κ(C1 + C2)

2 + κC1C2 − κC0(C1 + C2) (6.69)

= =
1

2
κ(C+ − C0)

2 + κC1C2 −
1

2
κC2

0 . (6.70)
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(In passing to the last equality, we merely completed the square.) This is
the so-called Helfrich free energy.

6.3 Vesicles∗

Phospholipid bilayer membranes are the basic building block of animal cells,
and lipid vesicles can also be formed in an artificial environment. Their size
can vary from a few 10 nm to 10 µm; in any case, the bilayer membrane
thickness of a few nm is considerably smaller than the vesicle diameter.
The total elastic free energy of a vesicle is the integral of fb over the whole
membrane area:

F =
κ

2

∮
(C+ − C0)

2 dA+ κ

∮
C1C2dA. (6.71)

As the membrane is very thin compared to vesicle size, we can integrate
over the neutral surface.

In principle, we should also include the membrane stretching energy of
the form

κA
2

(A−A0)
2

A0
(6.72)

where A0 is the reference area of the vesicle. However, in large vesicles the
typical magnitude of this term for any nonzero variation of A would be much
larger than the bending terms. For example, in a vesicle of radius 10 µm the
relative area variation such that the stretching energy would be comparable
to the bending energy is minute:

A−A0

A0
=

√
κ

κAA0
∼ 10−5. (6.73)

We have used κ ∼ 10−19 J and κA ∼ 0.1 J/m2. So we usually assume that
the membrane is unstretchable and that its area is constant.

The other common approximation is that of a constant volume. To some
extent, the membrane itself is permeable to water. But usually the water is
not pure and any solvent present gives rise to an osmotic pressure. So any
exchange of water that may take place between the vesicle interior and the
environment would inevitably destroy the pressure balance and the ensuing
pV terms would be much larger than the bending energy. As a result, vesicle
volume is essentially fixed.

Thus the vesicle elastic energy [Eq. (6.71)] is minimized subject to two
constraints: A = const. and V = const. Moreover, the Gaussian elasticity
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Figure 6.6: A few typical vesicle shapes: Stomatocytes, discocytes, pears,
triangular non-axisymmetric shape, and cigar. Adapted from Ref. [27].

term is irrelevant as long as we study vesicles of fixed topology. The Gauss-
Bonnet theorem says that the integral of the Gaussian curvature over a
closed area is equal to 4π(1− g) where g is the genus (the number of holes).
In a vesicle of spherical topology, g = 0 and we can easily verify the above
result: For a sphere, C1 = C2 = 1/R and

∮
C1C2dA = 4π. (In a torus, g = 1

and in a two-hole button g = 2.) Because of the Gauss-Bonnet theorem,
one needs not to worry about the Gaussian term as long as the topology of
the vesicle is fixed.

One of the key parameters that determine the shape of a vesicle is its
reduced volume. The reduced volume is defined as the ratio of the vesicle
volume (V ) and the volume of a sphere whose area is the same as the area
of the vesicle in question (A), and is defined by

v =
6
√
πV

A3/2
. (6.74)

In a sphere, v = 1 and in all other shapes v < 1. v can be considered
a measure of vesicle inflatedness. In the spontaneous-curvature model, the
other parameter specifying vesicle shape is the spontaneous curvature; in the
bilayer-couple and the area-difference-elasticity model, it is the monolayer
area difference and the preferred monolayer area difference

∆A = h

∮
(C1 + C2)dA = 2d

∮
HdA (6.75)

proportional to the integrated mean curvature of the vesicle. In all three
models, the classes of vesicle shapes g = 0 include ellipsoids, discocytes,
stomatocytes, prolate shapes (cigars), pears, nonaxisymmetric shapes (e.g.,
starfish-like shapes), necklaces, etc. (Fig. 6.6).



Homework problems

1. Third virial coefficient for hard spheres, Carnahan-Starling equation
of state (D. Grošelj)

2. Thermodynamic inconsistency (J. Zmrzlikar)

3. Diagrammatic expansion of pair functions (G. Posnjak)

4. Virial expansion of equation of state

5. Derivation of Frank free energy (B. Kavčič)

6. Frederiks transition (M. Krajnc)

7. Landau-de Gennes theory of nematic-isotropic transition (A. Horvat)

8. Undulation instability in smectics (N. Štorgel)

9. Polymer demonstration experiments (M. Medenjak, I. Kukuljan)

10. Worm-like chain (J. Zobec)

11. Polyelectrolytes (J. Mur)

12. Rotational isomeric states (M. Trček)

13. Derjaguin approximation (M. Čančula)

14. Depletion interaction between spheres (N. Rosenstein)

15. Self-consistent field theory of polymers (N. Adžić)

16. Classical approximation for polymer brushes (T. Mohorič)

17. Lattice models of polymer chains (B. Jenčič)

18. Elasticity of networks (J. Sablić)

125



126 CHAPTER 6. AMPHIPHILES

19. Phase diagram of binary solution (Ž. Kos)

20. Smectic-superconductor analogy (B. Mavrič)

21. Small-angle domain walls in smectics (T. Suhovršnik)

22. Limiting shapes of bilayer vesicles (M. Zadnik)

23. Elasticity of 2D networks (J. Sablić)

24. Membrane disks and cups (N. Lopič)

25. Persistence length of amphiphilic membranes (T. Dobravec)

26. Fractals in soft matter (K. Vozel)

27. Diffusion- and reaction-limited aggregation (R. Grah)

28. Complex amphiphile/diblock copolymer morphologies (A. Marin)

29. Minimal surfaces in soft matter (M. Vitek)

30. Polymer chain in a cylindrical tube (T. Verbovšek)

31. Nematic liquid crystal at a grooved wall (E. Ule)

32. Ecaped nematic structure in a capillary (T. Parkelj)

33. (U. Tomšič)
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